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Executive summary 

Conclusions

▪ The use of ML within Norwegian oil and gas 

industry is in its infancy, characterized with 

many pilot initiatives.  Few of these have 

been scaled and put into active use. 

▪ Significant opportunities have been identified 

within all TTAs in particular related to 

reduced GHG, reduced well delivery time, 

reduced OPEX and accelerated production. 

▪ The Norwegian oil & gas industry should step 

up its efforts significantly to fully seize this 

ML opportunity and release its potential. The 

industry capitalizes on a very small fraction 

of the value of the vast amount of data 

available for use. 

▪ ML is transformative and requires digital 

leadership, full exploitation of the data and 

new process and skills. ML pilots will not 

bring sustainable change and value unless 

scaled and broadly adopted.  

3

Background

Machine learning (ML) is widely applied in 

various industries and in the society. ML is 

increasingly becoming an important element 

also in the petroleum industry. OG21 have 

defined the following objectives for this work:

▪ How big is the opportunity related to ML on 

the Norwegian Continental Shelf (NCS) in 

terms of increased volumes, reduced costs 

and reduced environmental footprint?

▪ To which extent is the Norwegian petroleum 

industry currently capable of developing and 

deploying ML to improve value?

▪ How could ML be developed and adopted 

faster on the NCS?

These issues have been addressed via OG21-

workgroups, interviews with operators, 

academia in Norway and abroad, and literature 

search. 

Recommendations to accelerate ML

✓ Strengthen end user ML competency and 

awareness.

✓ Ensure mechanisms for trusted validation of 

ML solutions applying best practices and 

standards for ML validation (e.g. DNVGL-RP-

0510 Framework for assurance of data-

driven algorithms and models)

✓ Jointly innovate and develop low maturity ML 

opportunities.

✓ Collaboration to ensure data interoperability 

✓ Share data, tools, models and experiences 

for increased accessibility and adoption of ML
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OG21 – Study on Machine Learning in the Norwegian petroleum industry

Machine learning (ML) is widely applied in various industries and in the society. ML is increasingly becoming an important 
element also in the petroleum industry. OG21 have defined the following objectives for this work:

These issues have been addressed via OG21-workgroups, interviews with operators, academia in Norway and abroad, 
and literature search. 

How big is the opportunity related to 

ML on the Norwegian Continental 

Shelf (NCS) in terms of increased 

volumes, reduced costs and reduced 

environmental footprint?

1
How could ML be developed and 

adopted faster on the NCS?

3
To which extent is the Norwegian 

petroleum industry currently capable 

of developing and deploying ML to 

improve value?

2

4
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What is Machine Learning (ML)?

(Arthur Samuel, 1959)* 

Machine learning is defined as giving computers the ability to learn from data without 
being given explicit rules by a programmer 

INPUT

X

PREDICTOR

F(X)

PREDICTION

Y

*Samuel, A.L., 1959. Some Studies in Machine Learning Using the Game of Checkers. IBM Journal of Research and Development, Vol.3, Issue:3, Pg.210-229.
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Machine Learning or Data Science 
Methodology

The predictor = ML model is obtained through 
model training. 

We let the computer to learn the 
rules/patterns automatically from useful 
features of existing data. 

The main benefit of using ML is that no prior assumption on the 
(physical) process is required. This could enable us to solve problems 
where first principle model is not available.  

Another main benefit is that the inference time is relatively short as 
compared to e.g. physical-based simulation. This could enable us to get 
results more efficient.
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Steps used by the project to identify, define and evaluate ML opportunities

▪ Detailed evaluation of 
technology readiness, risks, 
enablers and barriers for 
adoption and use. 

▪ Provide recommendations to 
stimulate development and 
adoption of value-adding ML 

▪ Access to data with sufficient 
quality and security

▪ Detailed value assessment 
towards project objectives

▪ Recommendations

EVALUATE if ML 
solution is fit for use 
within acceptable risk 
and cost. Provide 
recommendations

▪ Types of ML, possibilities and 
limitations

▪ State of art, maturity

▪ Literature studies, interviews 
and contact with relevant O&G 
parties

DESCRIBE types 
of ML

▪ Problem description

▪ Current state in the industry

▪ ML examples

▪ Initial value estimation towards 
project objectives

▪ Prioritization of ML opportunities 
for detailed evaluation

▪ Literature study and mapping of 
status

DEFINE opportunity 
list and link to ML 
solution. Assess initial 
values 

6
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Overview of interviews 
and workshops conducted 4

Detailed TTA study results3

Main references5

Summary, conclusions 
and recommendations 1

Project definition, framing, and work 
process (Pre-read material)A1

Machine Learning basics2
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Terminology6

Background data and calculations 
for potential ML estimates7
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Summary, conclusion 
and recommendations

8
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Summary and conclusions

The first step has been done, but the next step is of a different magnitude

▪ The use of ML within Norwegian oil and gas industry is 

in its infancy, characterized with many pilot initiatives.  

Few of these have been scaled and put into active use. 

▪ Significant opportunities have been identified within all 

TTAs in particular related to reduced GHG, reduced 

lead time to first oil, reduced well delivery time, 

reduced OPEX and accelerated production. 

▪ The Norwegian oil & gas industry should step up its 

efforts significantly to fully seize this ML opportunity 

and release its potential. The industry capitalizes on a 

very small fraction of the value of the vast amount of 

data available for use. ML is transformative and 

requires digital leadership, full exploitation of the data 

and new process and skills. ML pilots will not bring 

sustainable change and value unless scaled and 

broadly adopted. 

▪ ML should be combined with other digital solutions, 

analytics and good industry practice  to release the 

potential. 

▪ The relevance of ML is cases where ML alone or in 

combination with conventional solutions is significantly 

better then alternative solutions.

9
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Summary of findings; Opportunities and overall effect per main area (1 out of 2)

Application areas (TTA): Key opportunities (ML) Potential 

Probability of 
success(PoS) 
(reflecting barriers 
and ML maturity) Estimated Potential for NCS

1
Energy efficiency 
and environment

Main contribution from ML applied in 
production optimization & energy efficiency. 

10% GHG reduction ~70% Reduction in GHG of about 0.9 Mega ton representing ca. 
6% (ref total GHG; 14.2 Mega ton/year)

ML could improve 
environmental monitoring/oil spill response 
and subsea leak detection

Reduction in environmental 
risk/ impact and/or oil spill volumes

~70% ML could contribute in reducing the environmental risk on 
the NCS. Quantification is difficult.

2
Exploration and 
increased recovery

Better reservoir management (IOR).

ML is unbiased, thus offer an opportunity for 
more objective reservoir modeling. 

50% faster model update.  

Reduced time and manning in operations phase 
due to more efficient seismic interpretation and 
modelling. 

ML applied for reservoir management and 
optimization leading to less energy 
consumption and GHG emmisions due to 
reduced water production and gas injection. 

2-20% increased recovery in simulation 
models, mainly as a consequence of optimized 
infill targets.  

~50% Reduced time and manning in operations phase due to 
more efficient seismic interpretation and modelling 
corresponding to yearly saving of 100 MNOK in OPEX. 

Notes: 
• Increased recovery potential high but not quantified 

due to high uncertainty in how the ML cases and 
potential will apply to different reservoir models. 

• Reduced GHG not quantified due to uncertainty in GHG 
impact from reduced water production and gas 
injection. 

2
Exploration and 
increased recovery

Better understanding of prospects and better 
basis for decision to drill.

Faster seismic processing results  (50%). 

Automatic fault and horizon interpretation.  

Better drilling decisions using ML in exploration 
leading to one additional discovery per year. 

About 4 months accelerated production due too 
faster seismic processing and interpretation. 

~90% Assumed one additional discovery of 5 mill Sm3 o.e. per 
year

Reduced time and manning in exploration phase 
estimated to 60 MNOK. 

Note: 
The value of the accelerated production is small since the 
entire project (including the cost) is accelerated. Please 
see page 75 for details. 

10
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Summary of findings; Opportunities and overall effect per main area (2 out of 2)

Application areas 
(TTA): Key opportunities (ML) Potential 

Probability of 
success(PoS) 
(reflecting 
barriers and 
ML maturity) Estimated Potential for NCS

3

Drilling, 
completions 
and 
intervention

Autonomous drilling and 
parameter optimisation to 

increase efficiency. 
Reduced NPT (Non-prod. Time) 
via ML incident detection 
algorithms.

20% reduction of well delivery time
20% reduction in sidetrack

~80% ▪ Drilling cost reduction; 3-4 bNOK/year
▪ GHG reduction of 0.06 Mega ton, 

representing 6% of drilling activities 
release (1.06 Mega ton)

4
Production, 
processing and 
transport

CBM, Predictive maintenance
& operator advisory models, 
(process digital twins) can 
significantly improve 
performance.  
However, good alternative to ML 
exists and should be applied in 
parallel to ML.

15% OPEX reduction

6-7% accelerated production

~60% ▪ OPEX reduction potential; ~ 2 bNOK/year
▪ Accelerated production potential via CBM 

& production optimisation corresponds to 
~ 8 mill Sm3 o.e. per year

11
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Multiple barriers identified to successful ML adoption

▪ ML applications often requires unique sets of competence and skills within 
data science and domain knowledge with very limited availability 

▪ Difficult to break out of “business as usual” way of working. ML applications 
mostly require 
– Collaboration amongst multiple stakeholders

– Data washing and preparation

– Communication and data transfer between multiple IT systems

– New work processes 

– Highly skilled resources combining domain knowledge, data science and programming

▪ Changes and efforts required for ML adoption requires a sound business 
case which is not easy to develop

▪ Organizational factors related to 
– Resistance to change

– Lack of trust in ML models 

– Insufficient leadership

▪ Data availability and quality is a challenge, in particular for older 
installations.  Diligent management of data quality is needed for ML to 
succeed

12
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Different ML barriers at different stages

C barriers – Knowledge, business case and complacency

▪ Lack of ML literacy and business case. Clever engineers may see the 

potential, but leaders are not familiar with ML and would need a clear 

business case to act on good ideas. 

▪ Old habits and complacency prevents the industry from acting on the 

ML opportunities. 

13

B barriers – Organizational 

▪ Despite that pilots show a potential, broad implementation requires 

that the data preparation process is streamlined and automated, new 

software solutions are developed and staff is trained in new tools and 

new ways of working. Strong business case for ML often comes with a 

big sum of required disruptive changes. 

C

ML IDEA 
AND CONCEPT

B

ML SUCCESSFULLY 
ADOPTED THROUGH PILOT

A

ML SCALED AND 
BROADLY ADOPTED

I
M

P
A

C
T

C
B

A

C+

B+

“The barrier is to get ML solutions fast enough in the hands of the 

end users of ML” 

(Quote from operator representative about main barrier for ML being scaled and 
applied within the organization)
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Key findings from study with regards ML and capability of the Norwegian 
Petroleum Industry to apply ML

14

▪ ML/AI is increasingly becoming more available and 

accessible in commercial applications, platforms, software 

and apps making it more ready to be adopted. 

▪ There have been several hype and disappointment cycles for 

ML over decades. The ML technology is now more widely 

deployed and conditions for ML success are now much better 

compared to previous hype and cycles.  

▪ ML niche players have emerged and helped support proof of 

concepts for the Norwegian Petroleum industry to capture an 

initial ML potential and value.

▪ Despite a steep learning curve for ML for approximately the 

last 5 years, there is still a lack of ML literacy throughout the 

industry and as a result many concepts, ideas and 

opportunities for adoption of ML are left unexplored. 

▪ Some examples of ML collaboration in the industry are 

identified, but more commonly knowledge transfers and re-

adoptions from successful ML pilots are very limited. 

“The machine learning revolution has been built on three things: 
Improved algorithms, more powerful computers on which to run 
them, and -thanks to the gradual digitization of society – more 
data from which they can learn. ” 

(Quote from Economist June 13th - 19th 2020)
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A strong advice from pilots/test cases

▪ The relevance of ML is cases where ML alone or in combination 

with conventional solutions is significantly better then alternative 

solutions, i.e. conventional solutions/models will be used if these 

provide good results. 

▪ ML models combined with 1st principle is recommended where 

such models exists.  In particular for cases where few events 

occur that can be used as basis for an ML model (like failure of a 

component, system trips). 

▪ Develop a sound business case.

▪ Requirement for strong leadership to drive change and patience in 

implementation.

▪ Close collaborations of multiple stakeholders, in particular 

between data scientists and domain experts.

15

“Computer science experts should work closely with discipline experts –
to understand their challenges, learn from each other, and identify ML 
opportunities together to streamline processes and operations.” 

(Quote from drilling technology expert about the importance of close collaboration 
between data scientists and domain experts for successful application of ML)
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Areas currently holding back ML and recommendations for acceleration

Areas currently holding back ML Recommendations for acceleration 

1. Lack of ML competencies, skills and awareness of its potential. Several maturity 
“level C” ML opportunities have not been explored and tested. Good ideas are 
left at the drawing board.

2. Knowledge transfers and re-adoptions from successful ML pilots and 
collaboration within the ML domain are very limited. 

3. Lack of transparency and trust in ML solutions; e.g.

a) domain experts do not trust results 

b) license partners due to lack of insight and proof of algorithms

4. For some ML opportunities data silos and insufficient amount of data prevents 
industry from exploiting the full ML potential and value through collaboration 
and sharing. Lack of interoperability between data systems and legal 
frameworks for sharing are perceived challenges, which with commitment and 
resilience can be effectively managed. 

Strengthen end 
user ML 

competency and 
awareness

Jointly innovate 
and develop low 

maturity ML 
opportunities

Ensure 
mechanisms for 

trusted 
validation of ML 

solutions

Collaboration to 
ensure data 

interoperability 

Share data, 
tools, models 

and experiences 
for increased 

accessibility and 
adoption of ML
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“The oil & gas industry must realize that it has become an IT 
industry. Managers are primarily engineers in the oil & gas industry 
and have a strong foot on the hardware. ML is transformative and it 
goes fast. We need to educate the industry. Otherwise it will be out 
of business.” 

(Quote from technology developer and researcher about the challenge related to 
most managers being engineers and not seizing the ML opportunity)
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Strengthen end 
user ML 

competency and 
awareness

Jointly innovate 
and develop low 

maturity ML 
opportunities

Ensure 
mechanisms for 

trusted 
validation of ML 

solutions

Recommendations – Competency, ML trust and innovation 

Build data science and ML competence, build trust in ML and innovate

▪ Standardize practices for validation 

of ML based solutions (e.g. DNVGL-

RP-0510 Framework for assurance of 

data-driven algorithms and models).

▪ Enforce transparency via regulatory 

requirements to validation of ML 

models if applied in business or 

safety critical decision processes. 

▪ Initiate Joint Industry initiatives within 

targeted areas – in order to share 

development cost, test applicability and 

concepts amongst operators, service providers 

and academia. Examples of low maturity high 

potential areas include:

– Logistics

– Drilling fluid management

– Process digital twin 

– Inspection and integrity management

17

▪ Continued education (short term) 

for staff, leaders and discipline 

experts in AI/ML basics, methods 

and applications. 

▪ Collaboration between universities 

and industry in defining, 

developing and delivering (short 

& long term) ML curriculum.

“Sharing a decision basis based on ML in a license is 
easy, but to validate the decision basis is a challenge” 

(Licensee about the challenge to validate ML results)
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Recommendations – Industry sharing and data interoperability

Enable data exchange and trade as well as cross company and industry learning  

Share data, 
tools, models 

and experiences 
for increased 

accessibility and 
adoption of ML

18

* READI JIP Ministry of Petroleum and Energy, 24. April 2019, SectorBoard Petroleum

Collaboration to 
ensure data 

interoperability 

Data interoperability

Collaboration to ensure data 
interoperability (Technical, Semantic, 
contractual, legal) and API’s for the oil and 
gas industry. 

Facilitate access to public and subscription-
based data, data exchange and trading. 

The READI (REquirementAsset Digital 
lifecycle Information)* project is in the 
process of developing interoperability 
standards and solutions and could hence 
be part of the solution to facilitate sharing 
of data. 

Data sharing

Collaborate in targeted areas in which data silos and 
insufficient amount of data prevents industry from exploiting 
the full ML potential and value through collaboration and 
sharing, e.g.

a) Cloud & ML based reliability database providing guidance 
for maintenance optimization. (sensitive to design, 
maintenance tasks, load history, etc..). 

b) Set-up DISKOS for ML use with the aim to discover new 
resources in existing data.

Tools

Sharing lessons learned, successful ML algorithms, case 
studies, etc. for accelerated learning and ML adoption

Cross industry collaboration for developing ML solutions in 
targeted areas with common interest, e.g. 

a) Environmental monitoring

b) Energy efficiency

c) Maintenance optimization / integrity management
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OSDU shows how the industry should work together to release the ML potential

Key enablers

▪ ML applications and algorithms are becoming increasingly available and 

accessible for all.

*The OSDU platform will

▪ Enable secure, reliable, global, and performant access to all subsurface and 

wells data.

▪ Reduce current data silos to enable transformational workflows.

▪ Accelerate the deployment of emerging digital solutions for better decision-

making.

▪ Create an open, standards-based ecosystem that drives innovation.

* From OSDU website; www.opengroup.org/osdu/forum-homepage

19

“The market currently consumes applications based on desktop. Many 
initiatives exist to tear down the silos, of which OSDU is the most 
important.” 

(Quote from ML technology provider about the importance of making ML available and 
accessible)

https://www.opengroup.org/osdu/forum-homepage
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Detailed 
assessment

PoS 
adjustment

Mitigations to address 
barriers

Mitigations to address 
threats and reduce 

risks 

Qualification activities 
to address 

technology 
uncertainty 

Enablers

Drivers

Probability of Success (PoS) depends on numerous factors but will be increased 
and supported by the recommendations if implemented

20

PoS

Recommendations

Strengthen end 
user ML 

competency and 
awareness

Jointly innovate 
and develop low 

maturity ML 
opportunities

Ensure 
mechanisms for 

trusted 
validation of ML 

solutions

Collaboration to 
ensure data 

interoperability 

Share data, 
tools, models 

and experiences 
for increased 

accessibility and 
adoption of ML
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Energy efficiency and environment

Main conclusions – TTA1:

▪ ML is an important part in order to establish a better understanding of natural ecological variations and 
thereby enable much earlier detection of possible environmental impact.

▪ Real time monitoring, or close to real time, is looked upon as the next natural steps in environmental 
monitoring. One need to prove early detection of environmental impact and ability to react fast, 
especially in sensitive areas. Real time monitoring could facilitate decisions related to disposal of drill 
cuttings and/or produced water in sensitive areas. It could also play a part in oil spill operations where 
monitoring of oil slick combined with weather data and ecological data could be important for detecting 
the right oil spill measures. ML is essential in order to develop real time monitoring.

▪ When it comes to remote sensing ML could play a role in characterization of oil spills, however more work 
is needed in order to develop and improve the technology. Access to site data from oil spill is a barrier.

▪ There is a potential for application of ML to detect leakages. The most promising application lies in adding 
ML to already existing systems as mass balance. This will enable detection of small leakages, which also 
is the type of leakages that occurs most often on the NCS. ML would also have an advantage as it can 
adapt to changing production profiles, which is a current challenge when it comes to mass balance 
systems today. Subsea sensoring is costly, hence improving current system with ML could be more cost-
effective. Having said that, development of subsea sensoring for leak detection is ongoing and could 
provide cost effective and robust solutions in the future.

▪ ML will not be the single key driver for bringing the costs down for integration of wind power offshore, 
however ML could possibly contribute with necessary cost reduction by reducing conservatism in design, 
optimize over the lifetime of the windfarm.

▪ ML is already a part of the solution for power prediction to ensure optimal energy production for the 
facilities (combined with back-up solutions).

▪ ML could play a role in establishing power-hubs offshore. ML can contribute to optimize power supply-
demand balance between the different installations attached to the hub, hence ensure an efficient 
operation of back-up solutions if needed.

TTA1 

Summary

Vulnerability to oil spill

ML Opportunities

1.1 Environmental Monitoring

1.2 Subsea leak detection

1.3 Electrification of offshore installations

GHG emissions 2018

[Mton CO2 ekv]

21
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Exploration and increased recovery

Main conclusions – TTA2:

▪ Generally, the oil and gas industry has taken on ML during the last 5 years. Exploration and increased recovery is the area where the 
industry has made the biggest progress in applying ML. Currently ML advances is expected to have impact on reduced lead time in 
seismic processing and interpretation, this may lead to less time from seismic processing and interpretation to decision to drill. The use 
of ML in the field production phase has enabled Fast Model Update (FMU) and Increased Oil Recovery (IOR).   

▪ Use of huge 3D and 4D seismic datasets has recently opened a new era of seismic imaging enhanced by ML applications. Seismic 
companies have basically no barriers for adopting ML on seismic. Oil price fluctuations are posing a risk on continuous ML 
development. 

▪ In terms of ML on field development analysis, Stanford University concluded through interview; ML has a good potential onshore with 
many similar fields. Field development in the North Sea, however, is hampered by a more complex infrastructure and requiring many 
agreements to be executed making it more difficult to copy the ML success from onshore field development.

▪ ML on seismic processing has been developed and put in production. Significantly faster processing, less human input have enabled 
less lead time for final product and better seismic. Better seismic results in:

a) Better geological models and less dry holes.  

b) Better placed infill drilling

c) Less man-hours

▪ ML on Seismic Interpretation has resulted in automatic fault and horizon interpretation. This in turn means G&G interpreter can spend 
more time on creative work, generating better geological models, saving man-hours.

a) Better geological models and less dry holes.

b) Better placed infill drilling

c) Less man-hours

▪ Well Log Interpretation: Huge amounts of well logs can be re-interpreted in very short time with little man-power. In field 
development, this will support fast model update. In exploration this may identify missed pay and opening new prospective 
trends/targets, giving huge potential upside, oil and gas discoveries.

▪ Increased Oil Recovery: ML on reservoir modeling enables revision of geological and geophysical models using much less manpower.
Fast Model Update provides better basis for infill targets, less dry wells (watered out) and better reservoir management.

▪ ML Challenges

a) Deep learning cannot understand the physics of complex non-linear processes.

b) ML works well when interpolating inside known data, limited predictability when extrapolating outside “the box”

c) All actions are based on existing data, resulting in a tendency of limiting thinking. E.g. the major improvements in field 
recovery and development have been achieved using totally new methods.

d) “Big data versus big mess” (Feedback in interview). This is not only a barrier, but is seen as a weakness, resulting in wrong
conclusions or lack of trust.

TTA2

Summary

ML Opportunities

2.1 Seismic Processing

2.2 Seismic Interpretation

2.3 Well log interpretation

2.4 Increased Oil Recovery (IOR)

22
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Drilling, completion and intervention

Main conclusions – TTA3:

▪ The largest potential is within detection of downhole incidents for detecting drilling incidents (anomalies) 
like downhole vibrations, twist off, stuck pipe, losses, kick detection, Torque & Drag etc.. 

▪ Autonomous drilling is at an early stage with some use of ML embedded within the drilling controls. 
Control of drilling parameters can be done fully automatic today, but level of implementation is limited. 
Robotics for drill floor operations also being developed but is generally more complex and the 
contribution from ML is more limited. 

▪ Some pilots conducted for digital well planning. This is an area requiring significant effort and time today 
and ML has a large potential to streamline and shorten the time and effort in the digital well planning 
process.  

▪ ML is an important part of current commercial software and solutions for detection of downhole incidents, 
autonomous drilling and to some extent digital well planning today, but its full potential is not yet 
currently exploited. The main barrier for scaling and broad implementation has been identified to be lack 
of trust in following any advice provided by the ML models. 

▪ Applying ML for Drilling fluid management and mixing was identified as a high potential ML opportunity 
not yet explored by the industry. 

▪ ML can be applied with data logging through conventional drill pipe. A wired drill pipe would however 
enable a higher density of data from down hole tools and thereby improving the quality and output from 
ML applications. 

TTA3

Summary

ML Opportunities

3.1 Autonomous drilling and parameter optimisation

3.2 Detection of downhole incidents

3.3 Digital well planning

3.4 Drill fluid management

23
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Production, processing and transport

Main conclusions – TTA4:

▪ The largest potential is within process control to secure stable production by applying 
adaptive models and/or process based digital twins (process simulators) enabling: 

– Stable production

– Control room decision support

– Forecast models for enhanced operations

▪ These solutions exists today as commercial products (adaptive process control) or operator 
made solutions.

▪ Larger models (simulators) combined with ML will enhance these solutions, but represent a 
larger investments.

▪ Maintenance and inspection optimization via CBM (Condition Based Maintenance) is the 
second largest potential.  CBM will improve planning, optimal maintenance interval setting, 
prevent breakdown of equipment.  The effect is reduced cost and increased uptime.

TTA4 

Summary

ML Opportunities

4.1 Predictive Maintenance & CBM

4.2 Production optimisation

4.3 Logistics optimisation

24
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The most promising ML applications for TTA 1 and 2

TTA ML application

ML Potential*

PoS full 
scale (A)

ML 
maturity 
Index

Main barrier for implementation of solution

$

V
o

l

L
T

C
O

2

S
p

il
l

1.1
Environmental Monitoring and Oil 
spill preparedness

M H 70% B+
Data availability, quality and cost related to data gathering (e.g. satellite data, airborne 
platforms). Organisational barriers.

1.2 Subsea Leak detection L H 80% C+
Requires cooperation between companies in order to develop new ML-based solutions 
and ensure an overall approach for leak detection. Trust in sensor technology.

1.3
Electrification of offshore 
installations

M L H 80% C/A** Data ownership could still be a barrier especially for offshore wind application.

2.1 Seismic Processing H H H M 80% A No major barriers

2.2 Seismic Interpretation H H H L 100% B+& C***

Scaling requires that the data preparation process is streamlined and automated. New 
software solutions need to be developed and/or existing solutions taken into use. Broad 
implementation requires organizational change, e.g. ensuring that geologists are trained 
in new tools and new ways of working. 

2.3 Well log interpretation H M L 100% B+

Data locked within the applications from software vendors. High diversity in data 
composite logs and formats. Large amount of image data results in high demand on 
computational power for graphic processing on ML model. 

2.4 Increased Oil Recovery (IOR) M H L H 50% C+
Not fully developed, more research needed. Difficult to train models due to variations in 
reservoirs, installations and facilities. Reservoir models considered business critical and 
hence only a few are shared openly. 
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* H,M,L not quantified.  Key: $: Cost reduction; Vol: Increased production; LT: Reduced field development Lead time; CO2: Reduced GHG emissions; Spill: Reduced oil spills.  

Maturity Index: A: ML scaled and adopted, B: Successful pilots, C: Idea and concept

** ML broadly applied for prediction of power from offshore wind 

*** Facies interpretation, defining target reservoirs and geological models is still only in research
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The most promising ML applications for TTA 3 and 4

TTA ML application

ML Potential*

PoS full 
scale (A)

ML 
maturity 
Index

Main barrier for implementation of solution

$

V
o

l

L
T

C
O

2

S
p

il
l

3.1
Autonomous drilling and 
parameter optimisation

H L M 80% B+ New way of working for drilling engineers to apply ML in well planning. Lack of 
trust in technology in particular for driller. Multiple suppliers applying different 
naming conventions for data. 

3.2 Detection of downhole incidents H L M 90% B+

3.3 Digital well planning M H H M 30% C+
Need access to other operator's overburden, pressure profile and experience 
data. New way of working for drilling engineers to apply ML in well planning. 
Multiple suppliers applying different naming conventions for data. 

3.4 Drill fluid management H H M 10% C Low ML Maturity.

4.1 Predictive Maintenance & CBM H M M 50% B+
Data quality and sharing of data to develop viable degradation models for key 
equipment.
Lack of basic data-structure hindering comparison between assets. 

4.2 Production optimisation H M 70% B+

Computational speed for large models – technology development needed for 
control room use. 
Too high Initial investment cost for large on-line simulators vs business 
cases/benefits.

4.3 Logistics optimisation M H 10% C Co-operation between licences to share resources and data.
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* H,M,L not quantified.  Key: $: Cost reduction; Vol: Increased production; LT: Reduced field development Lead time; CO2: Reduced GHG emissions; Spill: Reduced oil spills.  

Maturity Index: A: ML scaled and adopted, B: Successful pilots, C: Idea and concept
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ML identified but not yet explored in the Norwegian Petroleum Industry

27

TTA ML opportunity Problem definition

3 Service level prediction (maintenance)
Based on downhole tools' operational exposure, history of failures, MTBFs etc., ML algorithms can be used 
for service level prediction (maintenance requirement). May e.g. use historical failure data to optimize 
drilling parameters to avoid downhole tool failures.

3 Cuttings analysis ML can be used for more accurate continuous analysis of cuttings by using visual technologies.

4 SIMOPS / Marine operations 
Extraction of knowledge from past, similar Marine Operations as learning for the next campaign. By 
applying Natural Language Processing / ML applied for SIMOPS / Marine operations.  

4
Unmanned platforms / autonomous production (ML, 
CBM, etc. is enablers for Unmanned)

ML learning can be used to minimize need for humans offshore through more advanced use of 
monitoring, censoring and robotics.

4
Automated field development, Standardized subsea 
satellites

ML is applied to automate FFED, EPC related activities. Requires sharing of information between operators 
and EPCI contractors. 

4 Automated verification / compliance assurance ML applied for automated verification / compliance assurance in FEED a detail engineering. 

4
Design working process automation (machine 
thinking for design and procurement processes)

The design process has a lot of "waist" as information from one step to the next is not properly managed.  
New solutions like systematization of operator requirements, and standards requirements helps 
streamlining this process, and is well makes design changes, procurement more efficient. 

4 Life extension / reuse of infrastructure
ML applied for life extension process by analyzing past history, history for similar assets, and projections 
to future operations. 
Should be combined with classical RBI methods.
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The added value from ML mostly comes in combination with other technologies
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DIGITAL WORKER 
+ SUPPORT

Augmented reality 

Digital worker

Expert centers / integrated 
operations

INSPECTION 
AND DATA COLLECTION

Mini-ROV

Drones

Sensors 

ANALYSIS

Barrier panels, On-line risk

Pattern recognition

Data driven predictive 
maintenance

ROBOTICS

Unmanned remotely 
operated assets

Digitalization of requirements 
and specifications

3D-printing

ML Applications: Hybrid solutions, deep learning, image processing, anomaly detection

In the material collected, we see few cases where ML is used alone. Successful ML should be seen in combination with digitalisation èn-large as 

well as other technologies such as sensoring, systematic data collection, and other improvement actions within an enterprise.
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Machine Learning 

29

2
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Findings on the lesson learned during the development of ML solution

30

▪ Criteria for successful of ML application (or adoption):

– well defined ML problem, frame the ML problem in the right context .

– well defined strategy, where ML can add value to the problem.

▪ When to use ML?

– When we do not have a good deterministic model.

– It is a repeat problem. 

– The data is representative for the future in sufficient quality and quantity.

▪ Physics based simulator could be used as final test to see the 

performance of ML application.

▪ Physics based model in a hybrid model with ML solution is useful for:

– reduce false positive (ML result uncertainty)

– increase time to respond

– constraint the ML so it behaves according to physics understanding

▪ Holy grail of ML: encode physical representation into the ML algorithm. 

This is front end R&D not available for practical use yet. 

Using machine 
learning to predict 
wind turbine power 
output based on the 
input of atmospheric 
parameters from the 
simulation.

Using physical 
based modelling to 
predict atmospheric 
parameters

Example of Hybrid Solution

Source: Clifton et. Al. (2013)

Source: www.yr.no
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Findings on the lesson learned during the operation of ML solution

▪ We observe unanimous position with regards to the application of ML in 

industrial context:

– ML should not be a stand alone solution, i.e. hybrid solution is preferred. 

– ML should be made less black box, i.e. it should be possible to interpret, 

verify and explain.

– Any stakeholder involve in the planning, development and operation of ML 

application should be aware of its strengths, weakness and limitations.

▪ Hybrid solution may have several meanings or implications:

– ML is applied on top of or in cooperation with first-based principle (or physics 

based) models/algorithms.

– ML application for safety critical system should only be limited as decision 

support system, i.e. people is always in the loop.

▪ One of ML limitations for its widely adoption is related to scalability, i.e. a 

success for one case is not necessarily easy and straight forward to implement it 

to other systems.
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The 3 main types of machine learning 

Supervised learning 

deals with labeled training data. 

So in the training data we have 

both the input and the output. 

The goal of supervised learning 

is to obtain a predictor, such that 

when new input given, can 

predict the output.

1

Unsupervised learning 

deals with unlabeled data. We 

only have input data. The goal of 

unsupervised learning is to 

obtain the hidden patterns to 

learn about the data.

2

Reinforcement learning 

concerns with how an agent 

ought to take actions in an 

environment, that is learning 

what to do—how to map 

situations to actions—so as to 

maximize a numerical reward. 

3
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Machine Learning Types

Machine 
Learning

Supervised 
Learning

Regression Classification

Unsupervised 
Learning

Clustering
Dimensional 
Reduction

Reinforcement 
Learning

Y: discreteY: continuous Y: continuousY: discrete

INPUT
X

PREDICTOR
F(X)

PREDICTION
Y

See next slides for examples on ML application for Norwegian Petroleum Industry.  

33



DNV GL ©

Example use of different types of ML

Domain Problem Example use and ML type*

TTA 4: Anomaly detection on 
rotating equipment 

Not sufficient time from warning to failure of equipment and 
lack of data from real failure cases as machinery is protected 
to avoid failures. 

Anomaly detection

Step 1: Unsupervised clustering ML type 

Step 2: Annotation 

Step 3: Supervised classification ML type

▪ ML is used to determine what is normal (Unsupervised clustering) as opposed to what is an unwanted outcome (equipment failure or stuck 
pipe). ML model built through annotation (labelling) of the normal states. 

▪ ML predicts what comes next based on ML model providing warning on deviation from normal (supervised classification)

TTA 3: Detection of downhole 
incidents

Detecting and avoiding drilling incidents like downhole 
vibrations, twist off, stuck pipe, kick detection, Torque & Drag 
etc.

TTA 4: Predictive maintenance -
Remaining useful life

In this case data from real case failures are required and time 
series with data leading up to the failure is important. 

Prediction through supervised regression ML type

Neural network is built based on time series data from operation including failure data with pattern to data prior to failure. The ML model search 
for degradation pattern in order to estimate the remaining life. 

TTA 4: Production optimization -
Virtual flow meter

Instead of using expensive hardware metering devices, 
numerical models are used to compute the flowrates by using 
readily available field measurements such as pressure and 
temperature. 

For economic operation of the production systems, it is 
important to know the oil, gas and water flowrates from each 
well. It allows operators to make critical decisions in 
production optimization, rate allocation, reservoir 
management and predict the future performance of the field. 

Optimization

Step 1: Build and test unsupervised dimensional reduction ML type model 

Step 2: Build and test supervised regression ML type model 

Step 3: Compare results first principle (Hybrid solution)

Dimensional reduction algorithms (unsupervised learning) can be used in pre-processing step to construct informative features, find complex 
relationships between the original data and the output variable and remove redundant features. 

Historical time series data (temperature, pressure, fluid properties, operation conditions) from different wells with hardware metering devices are 
used to construct a supervised ML model (outcome is known). The outcome from the test of the ML model is recommended to be compared with 
the outcome from a first principle model for validation in particular for extreme cases. 

TTA 2: Seismic interpretation E.g. fault and horizon interpretation Step 1: Manual classification or unsupervised clustering ML type

Step 2: Annotation 

Step 3: Supervised classification ML type

First step is to cluster geological features either manually or by applying an unsupervised clustering ML type. Second step is annotation (labelling) 
of the geological features with subsequent construction of a supervised ML classification model. The end results will a ML model being able to 
identify faults and horizons. 

* Not a complete list of required steps and processes for ML adoption
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Some Machine Learning Limitations

ML algorithms require massive amount of 
training data.

Supervised learning requires labelled data 
and labelling training data is a tedious 
process.

Any bias and DQ issues in the data will be 
reflected in the prediction results.

IN OUT

ML 

Model

Blackbox: the results of some ML models are 
hard to be interpreted and how the models 
came to the decision are difficult to explain.

ML algorithms do not understand physics 
laws.

35

ML models still lack the ability to generalize 

conditions.
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Risks related to the application of ML solutions

▪ Does the ML technology work as expected and how would we know? 

We are creating complex systems and these systems have embedded risks 

which are different from the sum of their parts. This can lead to emerging 

risks and, consequently, new trust gaps. We ask ourselves: How can we 

build trust in such new technologies?

▪ A high-risk scenario reduces the tolerance for erroneous predictions.

We cannot accept a decision, that may have catastrophic consequences 

being based on faulty predictions of an ML algorithm or AI agent. 

▪ Critical consequences are often related to tail events - for which data 

are naturally scarce.

ML methods require data. If the training data are scarce, the uncertainty 

associated with the predictions will be high, and the predictive accuracy 

significantly reduced. 

▪ ML models that are able to fit complex data well are often opaque 

and impenetrable for human understanding.

This makes the model inscrutable and less falsifiable. For a decision maker in 

a high-risk context, this increases the uncertainty and thus reduces her 

ability to trust the model.

▪ Example of high risk application

– Prediction of load bearing structural failures
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Some important checklist items for success with machine learning

37

1. Is the problem well defined, repeated and represent an important problem to be solved? 

a) Is there a business case for solving the problem? Can a success be scaled and 

broadly implemented to magnify the value? Are all factors for full implementation 

(e.g. new tools, new competency requirements, training requirements) accounted 

for in the business case? 

b) Is there good and validated “Non-ML” solutions available for the problem? If yes, 

use them. 

c) Otherwise ML could be considered.

2. Determine suitability of  ML, especially related to data with sufficient quality and 

predictive power.

3. Involvement of domain experts in building the ML model.

4. Validation and testing confirms ML performance and it brings value with acceptable risk.

5. Is the operational environment allowing you to easily retrain and redeploy the model? 

6. Peer review and verification of ML model and the development process successfully 

implemented.

A more comprehensive checklist and guidance can be found in DNV GL RP 0510.
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What do we mean by a hybrid solution combining ML and first principle?

Example of combining ML and first principle (hybrid) 

▪ A physical model (E.g. Computational fluid dynamics or finite 

element analysis) is run to create synthetic training data as input 

for building a ML model. The advantage of this is that the ML 

model will provide faster results compared to physical simulation 

tools. The ML model may however have a lower accuracy 

compared to the output from the physical simulation tools. 

▪ When you build the ML model you can force the ML model to be 

constrained and behave according to physics understanding.

▪ There are multiple R&D efforts to encode physical representation 

into the ML algorithm. This is front end R&D not available for 

practical use yet.

References:

Combining machine learning and process engineering physics towards enhanced accuracy and 

explainability of data-driven models Timur Bikmukhametov∗ , Johannes Jäschke, April 2020. 

DNV GL: https://ai-and-safety.dnvgl.com/
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Why do we need Hybrid Solutions?

How it combines the best of both worlds*

39

Data driven modelling (ML) Physics simulations Hybrid solution

S
tr

e
n

g
th

s

+ Fast inference

+ Reveals hidden patterns in the data  

+ Strong capability to relearn from 

new data

+ No prior assumption required for the 

process

+ Generalizable 

+ Proven accuracy with known limitations

+ Explainable predictions 

+ Fast inference

+ Generalizable 

+ Proven accuracy with known limitations 

+ Explainable predictions

W
e
a
k
n

e
s
s
e
s ÷ Often more difficult to explain 

outcome

÷ Highly depending on good data 

quality 

÷ Difficult to make ML model 

generalizable

÷ Slow predictions 

÷ Expensive to develop

÷ Limited to current physical understanding

÷ Less adaptive to learning

* This slide is inspired and further developed based on “Hybrid AI/ML- Bridging the gap between machine learning and real assets, Shane McArdle, Vice President Kongsberg Digital AS, 26. august 2020
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Detailed TTA study results

40
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TTA1 – Energy efficiency and environment

41

3.1
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TTA1 – Energy efficiency and environment:
Several areas were explored, and 3 areas were identified as high potential

Integrated 

monitoring/modelling 

and Oil spill preparedness

Subsea 

leak detection

Electrification 

of offshore installations

Produced water management for EOR chemicals

Carbon capture and storage

Other areas that were mapped and explored:

42
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TTA1.1: Integrated monitoring/modelling and Oil spill preparedness

43

Challenge Increased attention from authorities coupled with entrance 
into remote and sensitive areas requires new solutions for 
environmental risk management.

▪ Need improved understanding of natural variations of the 
ecology in question

▪ Need to ensure ability of early detection and sufficient 
response time of oil spill events or other possible events 
impacting the environment

The industry agree on the need to develop solutions for real 
time monitoring and improved systems for remote sensing.

Opportunity ▪ ML applied can enable higher resolution monitoring that 
will give an improved understanding of natural variations.

▪ ML could be used to identify correct measure for the 
particular response operation, combining ecological 
and physical data.

▪ ML can enable faster characterisation of oil spill based on 
satellite imaging.

▪ ML can enable real time monitoring for operations (e.g. 
drill cutting disposal) to facilitate decisions involving 
environmental risk.

Benefit for 
the O&G 
industry

▪ ML is regarded as a critical component for development of 
environmental management system enabling possible 
entrance in sensitive and remote areas.

▪ Correct decision preventing environmental damage in 
operations can save substantial costs related to possible 
clean up activity.

Status:

Machine Learning is part of some of the 

solutions today, both with respect to 

environmental monitoring and oil spill 

preparedness. However, significant 

improvements are still needed to realize the 

full potential of ML.

Barriers for ML:

▪ Data availability for environmental 

purposes

▪ Different disciplines and actors involved

▪ Quality and cost of satellite data

▪ Data sources and costs related (spec. 

airborn platforms)

Enablers:

▪ Development of unmanned platforms 
drives new solutions

▪ Strong focus from authorities

▪ Data sharing and cooperation among 
operators and other actors are established

▪ ML is already being used in 
different applications; hence experience is 
gained.

Risks:

▪ Wrong prediction of environmental impact 
leading to costly and misguided measures

Environmental vulnerability towards oil spill pollution 

(Havmiljo.no)
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TTA1.2: Subsea leak detection

44

Challenge Increased attention from authorities coupled with an 
increase in subsea activities in the years to come forces the 
industry to develop new solutions for subsea leak detection.

▪ Need to develop solution that is not stand alone but is 
integrated in a more holistic solution for detection and 
response.

▪ In particular, the industry needs solutions for detection of 
small leakages and reduce the challenge of false alarms.

The industry need to develop new solutions based both on 
existing systems and new technologies.

Opportunity ▪ ML can be applied as part of existing systems for leakage 
detection (e.g. mass balance) in order to improve 
sensitivity of the system and hence detect small leakages 
before they occur.

▪ ML could be used as part of an integrated system for 
detection of leakage, with several technologies and data 
sources involved (e.g. subsea sensors and remote 
sensing).

Benefit for 
the O&G 
industry

▪ ML is regarded as an important component in improving 
existing mass balance systems to detect small leakages. 
Small leakages is by far the most frequent event when it 
comes to oil spill, however also the most difficult to detect. 
Detection of such spill will not only reduce environmental 
impact from the leakage itself but could also prevent 
larger leakages to occur.

▪ ML could save cost due to reduced need for additional 
sensors and potential for false alarms.

Status:

The most promising application in near time 

lies in adding ML to already existing systems 

as mass balance. This is most cost effective 

and ML would be able to adjust to changing 

production profiles over time. Subsea 

sensoring is costly but is regarded to be part 

of the future solution for subsea leak 

detection.

Barriers for ML:

▪ Development of solutions require 

cooperation

▪ Trust in technologies might be a barrier for 

further development

Enablers:

▪ Development of unmanned platforms 
drives new solutions

▪ Strong focus from authorities – both 
Petroleum Safety Authorities and 
Norwegian Environmental Agency

Risks:

▪ If the algorithms does not manage to 
detect a leakage it could cause 
negative environmental impact

Incidents with acute chemical spill 2001-2018 
Divided on leakage categories (Ptil 2018)

Incidents with acute oil spill 2001-2018 
Divided on leakage categories (Ptil 2018)

1

2

17

45

139

458

>1000 tonn

100-1000 tonn

10-100 tonn

1-10 tonn

0,1-1 tonn

0-0,1 tonn

620

957

952

>1 m3

0,05 - 1 m3

<0,05 m3
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TTA1.3: Electrification of offshore installations

45

Challenge The oil and gas industry has committed to CO2 reduction 
targets:

▪ -40% in 2030 compared with 2005

▪ Near zero in 2050

Significant cuts need to be taken on existing and new assets 
on the NCS.

Opportunity ▪ ML can be part of solutions for electrification of assets on 
the NCS, both within Power from shore technologies and 
Integration of offshore wind.

▪ ML is vital for prediction of power from offshore wind 
installations and hence to ensure an efficient operation of 
an integrated management system.

▪ ML could possibly contribute with necessary cost reduction 
by reducing conservatism in design, optimize over the 
lifetime of the windfarm.

▪ ML could be used as part of an integrated management 
system for an offshore power-hub balancing demand and 
supply.

Benefit for 
the O&G 
industry

▪ Power from shore is assessed to have a potential to reduce 
CO2 emission from upstream activities with 85% (Rystad 
2019).

▪ Integration of offshore wind is assessed to potentially 
reduce CO2 emissions with 35-40% per installation 
(Rystad 2019).

▪ Power prediction from wind turbines together with back-up 
solutions is challenging, and ML solutions can play a role. 

Electrification and ML:

Machine learning is part of solution both 

when it comes to preventive maintenance of 

wind turbines (resulting in already high 

uptime) and for power production prediction. 

Challenge is now to develop this further in 

order to meet requirements for feeding into 

an offshore facility grid. This implies better 

time resolution and more detailed forecast 

confidence.

Barriers for ML:

▪ Ownership of data is still an issue; however 

this barrier was more dominant some 

years ago.

Enablers:

▪ Already existing use of ML in the wind 
industry in general is an enabler for use of 
ML for offshore wind power of NCS.

▪ Fleets of wind turbines provide a lot of data 
that can be used for ML application.

Risks:

▪ Wrong power demand/supply balance 
could lead to power fall out or in-efficient 
operation of back up solutions. 

GHG emission 2018 in Mt. CO2 equivalent (Miljøstatus, Mdir)

Mt. CO2 equivalents
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TTA2 – Exploration and improved recovery
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NS «average» Field Development Schedule

Uncertainty studies
Ensemble simulation
Optimization strategy
Speed up modelling

Well design
Geo steering
Optimize well trajectories
Geomechanics ERD

▪ Big data & huge 
opportunities for ML

▪ History matching
▪ Fast model update
▪ Geomechanics ERD
▪ Production optimization

ML on seismic
Reservoir characterization

Discoveries not developed

Years since discovered

M
il
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o
n
s
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m
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u
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a
le

n
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Stanford University project has concluded; ML has a good 

potential onshore with many similar fields. Field development 

in the North Sea is however hampered by a more complex 

infrastructure and requiring many agreements to be 

executed making it more difficult to copy the ML success 

from onshore field development.

Largest potential for ML

ML on; seismic processing 
and interpretation, missed 
pay, well data structuring 
and contextualization

PDO

Open acreage 
Exploration

Licensed Exploration
Pre-PDO field 

development decision 
gates

Execution Production

First oilDiscoveryLicence Award 6 years 10 years 3 years 1-80 years
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TTA2.1: ML – Seismic Processing

48

Challenge Too long from time from acquisition to interpretable seismic. 
Traditional manual seismic processing means extensive man-
hours.

From a seismic processing and imaging perspective, ML 
applications include:

1. Noise attenuation

2. Velocity model building (VMB)

3. Signal reconstruction

4. Optimization of parameters used in seismic imaging

5. 4D seismic processing in producing fields takes too long

Opportunity ▪ Noise removal traditionally done on a few test lines can be 
done on the whole survey using ML, faster and better.

▪ Experienced geophysicist is needed for velocity picking, ML 
has the function of trial and error on large datasets.

▪ ML on seismic imaging has been tested successfully. 

Benefit for 
the O&G 
industry

▪ Better seismic will result in less dry wells.

▪ 4D seismic for infill production wells need to be delivered 
fast to identify bypassed oil and good targets for drilling.

▪ Cost of 3D is not so simple anymore, MC business model 
and size matters more.

▪ Currently seismic companies take risks shooting seismic 
speculative and not on contract to cover the full cost. ML 
cost reductions related to seismic processing, will be for 
the seismic companies mainly. 

ML on Seismic:

2D and particular 3D and 

4D seismic are huge 

datasets, which recently 

has opened a new era of 

seismic imaging enhanced 

by ML. Adoption of ML is 

seismic processing is 

today broadly 

implemented.

Barriers for ML:

▪ Seismic companies have 

basically no barriers for 

adopting ML on seismic

▪ Oil price fluctuations are 

resulting is a challenge 

for long term ML 

development

Enablers:

▪ Computing power 

Risks:

▪ No significant risks

Year K USD/km2

1982 70-100

1986 30

1990 12-15

1993 8-9

1999 4

2002 10-20

2007MC Pre lic. 1,65 After 5

QC in Seismic Data Processing

https://mem.lyellcollection.org/content/memoirs/29/1/1.full.pdf  
https://expronews.com/exploration/the-rise-of-multi-client-data-new-business-models/

Cost versus year of acquisition for 3D seismic 

data in the North Sea, UK
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TTA2.2: ML – Seismic Interpretation
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Challenge Time spent on repetitive work is too long. More time should 
be spent on creative valuable work. Fast Model Update (FMU) 
requires fast results in 3D and 4D.

1. Fault interpretation (exploration and production), has 
come very far and is now in production.

2. Horizon interpretation (exploration and production) in FMU 
context is now in production. 

3. ML adoption for seismic interpretation in exploration is still 
immature.

4. Facies interpretation, defining target reservoirs and 
geological models is still only in research.

Opportunity ▪ Faster turnaround from finished processed seismic to 
creative seismic interpretation.

Benefit for 
the O&G 
industry

Benefit case 1: From 1 week to one day for seismic 
interpretation through application of ML.

▪ Expected 100-150MNOK yearly savings within exploration 
interpretation.

▪ Similar benefit expected in IOR 100-150MNOK per year.

Benefit case 2: Certain processes is done in 1/10 of the time 
using ML.

▪ More Geological and reservoir information out of seismic.

Status:

During 5 years of ML in oil 

& gas, significant leaps of 

increased efficiency but 

more investment and 

development are needed 

to move technology 

forward.

Barriers for ML:

▪ Interpreters need to be 

trained for the new tool

▪ New software on seismic 

interpretation is 

competing with existing 

widespread software 

where data is inherent.

Enablers:

▪ Research and 
competence building

Risks:

▪ No significant risks
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TTA2.3: ML – Well log interpretation
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Challenge Well data is unstructured, stored in silos, representing 
versions not always corrected for depth and environment.

1. Petrophysics auto correction, auto interpretation and store 
in “the cloud”.

2. Well data is usually on pdf, tiff, and excel, LAS, DLIS, 
images and tabulated results, and endless versions.

3. Huge amounts of scanned copies to be organized and 
searchable, (not so much in Norway).

Opportunity ▪ Petrophysics on a grand scale in fields of say 150 wells can 
be reinterpreted in days rather than months.

▪ ML can make unstructured data structured.

Benefit for 
the O&G 
industry

▪ Efficiency in data QC and management

▪ Enables missed pay

▪ Less man-hours

ML on Well Data 

Management:

Some examples of 

successful application of 

ML in oil & gas and 

increased efficiency.

Barriers for ML:

▪ Software vendors tend 

to keep data within 

application

▪ QC of data is a 

challenge; to be sorted 

by ML:

▪ Diskos not configured 

for ML, but could be 

transferred to a cloud 

store for ML application

Enablers:

▪ Many companies are 
offering these services

Risks:

▪ No significant risks

CGG

Petrel
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TTA2.4: ML – Increased Recovery
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Challenge In producing fields large amounts of data is acquired, 
bbl/day per well, per zone. Numerous sensors are presenting 
a complex and sometimes not very confident picture. 
Allocation challenges, choking and re-perforations, as well as 
closing off watered intervals.

1. Platform operators are making decisions on how to 
optimize well flow.

2. Reservoir engineers are evaluating a huge flow of data, 
well stream allocations, history matching, prognosticate 
future production and plan for interventions.

Opportunity ▪ ML; By learning of the past actions, production 
management can be optimized.

▪ Reduced history matching time and effort from months to 
weeks.

▪ ML provides unbiased results.

▪ In new (and old) fields massive data acquisition programs 
provides extensive databases and open new level of 
understanding using ML

Benefit for 
the O&G 
industry

▪ Increased recovery

▪ Reduced time and effort for history matching

ML in IOR:

1. Immature

2. Huge potential for 

increased oil recovery

Barriers for ML:

▪ Lack of trust in ML 

models

▪ Training of models and 

competence building

▪ Difficult to train models 

due to variations in 

reservoirs, installations 

and facilities

▪ Data sharing. Reservoir 

models are often seen 

as more business critical 

and hence only a few 

are shared openly.

Enablers:

▪ Extensive data available 
for ML

Risks:

▪ No significant risks
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TTA3 – Drilling, completion and intervention
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3.3
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The way towards fully autonomous drilling

Autonomous drilling is at an early stage with some use of ML embedded within the drilling controls. Control of drilling 

parameters can be done fully automatic today but level of implementation is limited. Robotics for drill floor operations also being 

developed but is generally more complex and contribution from ML is more limited. 

Benefits:

▪ Improved drilling efficiency

▪ Performed within technical limits 

every time

▪ Reduced operational cost

▪ Improved safety for rig floor 

personnel 

Incident 
detection

Autonomous 
drilling

Autonomous 
drilling with 

robotics on drill 
floor
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Planning and 
Project 

management
10%

Equipment and 
material for well 

construction 
10%

Drillingrigg
40%

Logistics
20%

Boretjenester
20%

TTA3.1: Autonomous drilling and parameter optimisation
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Challenge ▪ 35-50% of a well's cost is related to drilling and 
completion of the well over the lifetime of the well. 
(Konkraft 2018).

▪ Cost savings may be achieved through increased drilling 
speed (Forskningsrådet 2020).

Opportunity ▪ Optimising the drilling parameters using ML, results in 
increased ROP and more efficient flat time, which again 
reduces average time spent per well. ML can be used for 
qualified decision, either automatic or manual, during 
drilling to increase drilling efficiency. This reduces average 
time spent per well.

Benefit for 
the O&G 
industry

▪ Ensuring operating within well and equipment's limitations

▪ Enhanced drilling operation efficiency

▪ Leads to increased volumes as the economy in marginal 
wells improve

▪ Reduction in invisible lost time (ILT)

▪ Up to 12% increased efficiency observed

▪ Potential to reduce well delivery time and cost by 30-50% 
compared to conventional drilling technology 
(Forskningsrådet 2020)

D&W and ML:

ML is an important part of current 
commercial software and solutions for 
autonomous drilling, but its full potential is 
not yet currently exploited. The main barrier 
for scaling and broad implementation has 
been identified to be lack of trust in following 
any advice provided by the ML models.

Barriers for ML:

▪ New way of working for drilling engineers 
to apply ML in well planning. 

▪ Lack of trust in technology in particular for 
driller. 

▪ Multiple suppliers applying different 
naming conventions for data.

Enablers:

▪ Sharing of ML software, tools and models

▪ New generation drilling engineers with 
more data centric skills

Risks:

▪ Wrong prediction (too conservative or too 
aggressive). Lost circulation situation 
leading to loss of primary barrier (drilling 
fluid) and loss of time to re-establish 
barrier.  

▪ Reduced operating window

Drilling cost (MNOK/well)

Distribution of drilling cost

Source: KonKraft presentation, "Brønnleveranser for fremtiden", 

Per Lund, 5th February 2018 
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TTA3.2: Detection of downhole incidents
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Challenge ▪ Non-productive time (NPT) makes up around 15-25% of 
the well cost (Konkraft).

▪ Cost savings may be achieved through reduced non-
productive time (Forskningsrådet 2020).

Opportunity ▪ ML can be used for detecting drilling incidents (anomalies) 
like downhole vibrations, twist off, stuck pipe, losses, kick 
detection, Torque & Drag etc..

▪ This can be done by monitoring and trend analysis of real-
time data.

Benefit for 
the O&G 
industry

▪ Reduction in NPT – potentially 50% reduction by using new 
or improved technologies (OG21)

▪ Circa 20% less sidetracks

D&W and ML:

Machine Learning is used for monitoring and 

trend analysis of real-time data today, to 

detect downhole incidents and alarm the 

driller in due time of any events. However, 

the full potential of ML is not realized.

Barriers for ML:

▪ New way of working for drilling engineers 

to apply ML in well planning. 

▪ Lack of trust in technology in particular for 

driller. 

▪ Multiple suppliers applying different 

naming conventions for data. Time stamp 

data applied differently amongst suppliers.

Enablers:

▪ Sharing of ML software, tools and models

▪ New generation drilling engineers with 
more data centric skills

Risks:

▪ Wrong prediction (too conservative or too 
aggressive). Unnecessary time spent on 
troubleshooting. 

2017 Semi-sub & jack up 

development well cost breakdown

2017 Platform development well 

cost breakdown

Source: Wells Insight Report 2018, Oil & Gas Authority
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TTA3.3: Digital well planning

D&W and ML:

Some pilots conducted for digital well 

planning. This is an area requiring significant 

effort and time today and ML has a large 

potential to streamline and shorten the time 

and effort in the digital well planning process. 

Barriers for ML:

▪ Need access to other operator's 

overburden, pressure profile and 

experience data.

▪ New way of working for drilling engineers 

to apply ML in well planning. 

▪ Multiple suppliers applying different 

naming conventions for data. Time stamp 

data applied differently amongst suppliers. 

Enablers:

▪ Sharing of ML software, tools and models

▪ New generation drilling engineers with 
more data centric skills

▪ Data sharing for small operators with 
limited experience and data sets

Risks:

▪ Engineering experience is critical to quality 
check the well design and planning 
algorithms
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Challenge ▪ Typical time spent on well designing work is 2-3 months.

▪ Cost savings may be achieved through reduced non-
productive time (Forskningsrådet 2020).

▪ Reduce time spent on well design, optimize well design, 
reduce ILT and NPT.

Opportunity ▪ Automatic well path and well design based on historical 
and experience data.

▪ Reduce time spent on well design, optimize well design, 
reduce ILT and NPT.

Benefit for 
the O&G 
industry

▪ A more agile well design process, closer to real-time well 
planning with up to 80% decrease in well designing time.

▪ Possibly higher well success rate leading to the production 
goal is met.

▪ Increased production due to optimized well design 
(maximized reservoir contact).

▪ Avoid requirement to drill additional well due to poor well 
design.

▪ Enabler for better drilling thorough real-time update of 
plans. 
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Drilling fluid management and mixing

57

Challenge ▪ Drilling fluid mixing is manual work and opens for human error.

Opportunity ▪ Efficient drilling fluid management and mixing resulting in tailor made and optimized drilling fluid for a specific well.

Key technologies Gain/value Maturity Potential saving Barriers

Drilling fluid 
management and 
mixing

▪ Optimization of mud design.

▪ Tailor made fluid for the well while drilling.

▪ Mud specification is kept within the 
acceptance criteria and at the same time 
ensuring the required qualities of fluid is 
maintained.

▪ Predict fluid properties as function of 
additives; partly unknown starting point; 
learn during operation.

C ▪ Reduced cost due to 
less personnel 
offshore

▪ Less HSE incidents 
due to less 
personnel offshore

▪ Reduced NPT

▪ Time/depth uncertainty leading 
to difficulties in to interpret and 
learn from data

▪ Unclear if ML can be applied

▪ Organisational barrier to move 
personnel onshore
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TTA4 – Production, processing and transport
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3.4

www.norskpetroleum.no 
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Hypothesis related to Production, processing and logistics

Hypothesis Facts

1. Maintenance and inspection can be optimized, giving

– Cost savings and 

– Increased production and

– Avoidance of costly repairs/trips 

via CBM (Condition based maintenance) and predictive 

maintenance enhanced by Machine Learning.

2. Digital Twins (process based) can be an aid in 

improving/maximizing production. 

1. On-line decision tool

2. Autonomous operation

3. Improving Energy efficiency 

3. These technologies are enablers for Remote operation.

▪ Total operating cost for NCS is 60 bNOK/year

▪ Where operation and maintenance is split equally.

▪ Logistics cost is ca. 4 bNOK/year  

21 21

4

14

ORDINARY 

OPERATING COSTS

MAINTENANCE COST LOGISTICS COSTS OTHER
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Ref.; NPD, 2020. Numbers in bNOK.

Total Operations Costs (excluding tariffs & pre-ops)
Average 2016..2019
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Potential related to Condition Based Maintenance (CBM) 
and Predictive maintenance

www.quartic.ai/smart-industries/predictive-maintenance 

▪ Status: CBM is commonly used in NCS/O&G. Ca. 30% of maintenance activities is considered 

to be CBM based, such as inspections, testing, on/off-line monitoring (see figure).

▪ Corrective maintenance: About 50% of maintenance work (#of WO or hours or cost) is 

corrective, i.e. maintenance work after a reported failure. 

– Efficient techniques for Anomaly detection and RCFA (Root Cause Failure Analysis) will make 

the repair work more efficient. As well as learning from events to avoid repeated failures. 

▪ CBM: Basic principle for CBM is to identify degradation as function of time (P-F curve), give 

early detection, and take remedial actions – planning and process changes – to avoid plant 

shutdown and costly repair (see figure).  

▪ Predictive maintenance: Advanced models for prediction, either based on measured data, 

physical models or combination. Commonly used for structural integrity, topside corrosion, 

pipeline/riser integrity – named Risk Based Inspection (RBI). 

▪ Anomaly detection: Interpretation of monitoring data to determine root cause of failure for 

efficient repair/recertification after an event. 

▪ Potential: Develop & implement CBM, anomaly detection and Predictive maintenance 

techniques further by utilizing sensors, models and statistical data in combination.  ML will 

enhance this process.  

– Goal should be to move from ca. 30% to 60% CBM. 

– But; CBM will not “heal” the equipment – repair needs to be done

60

Maintenance

Preventive 
Maintenance

Interval Based

Calendar

Run Hours

Condition 
Monitoring

Continuous 
Based

Time Based

Functional 
Testing

Inspection

Corrective 
Maintenance

Planned 
Corrective

Unplanned 
Corrective

KEY: CBM…Traditional

P-F Curve 4.0 The role of Machine Learning

Current level of CBM technology implementation

Source: DNV GL
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TTA4.1: Condition Monitoring of Process plant technical condition 
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Challenge Maintenance cost represent 30% of total operating cost in 
NCS.

▪ More than 50% of the maintenance work is trigged by 
unforeseen failures of the asset (Corrective 
maintenance).

▪ More than 50% of the preventive maintenance work is 
time based and not condition based.

The industry and “maintenance professionals” are convinced 
that CBM based maintenance will benefit the industry 
enlarge.

Opportunity Condition based maintenance strategies will:

Reduce maintenance cost (OPEX) by:

▪ Improve maintenance planning.

▪ Increase maintenance intervals as work is called for based 
on actual condition of the equipment.

▪ Prevent breakdown of equipment .

Increased uptime as failures/trips can be avoided.

Benefit for 
the O&G 
industry

▪ Maintenance cost represent about 20 BNOK/year for NCS 
(NPD 2020).

▪ Overall improvement opportunity based on applying CBM 
is from 5 to 30% based on industry experience, 
representing 1 to 6 BNOK/year savings due to early 
detection and extended PM intervals.

▪ The ML opportunities differs between system groups, 
where EL, R and C (se fig) got the highest potential.

▪ Uptime: average plant unavailability due to plant failure is 
ca. 5-6% (production loss). About 1/3 of the losses can be 
avoided, so that the unavailability drops from 5-6% down 
to 3-5%. 

CBM and ML:

Machine Learning is part of some of the CBM 
solutions today. ML must be combined with 
physical models, and statistical data 
(industrial sharing) to give full benefit. About 
25% of the potential CBM benefit is related 
to use of ML.

Barriers for ML:

▪ Few failure cases for ML to learn.

▪ Anomaly detection is a good candidate for 
ML, but “automatic” WO generation and 
task proposal is not mature.

▪ Lack of systematic data structure hindering 
comparison between assets.

Enablers:

▪ Data infrastructure

▪ Industry wide sharing of information like 
OREDA, RNNP should be strengthened –
i.e. learn from the industry not only from 
own plant (in particular for the smaller 
operators).

▪ Concepts exists today via both traditional 
enterprises and new companies.

Risks:

▪ Wrong prediction  - too conservative or too 
aggressive) leading to either unnecessary 
shutdowns or unplanned shutdowns.

Typical Maintenance Cost Distribution

Average production Loss by Category 
from 2015 – 2017
Actual production vs MPP (Max Production Potential)

15%

30%

20%

27%

8%

F: FABRIC

C: CONTAINMENT

R: ROTATING EQUIPMENT

EL/INSTR/TELE

OTHER

2,4

1,2

1,6

2,5

1,9

6,3 Plant failure

Plant planned

Turnaround

Wellwork

Reservoir

Export

Source: McKinsey

Source: DNV GL
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TTA4.2: Production optimisation 
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Challenge The plant control is done by a combination of manual 
procedure and cybernetic based process control – balancing 
max production and safety for plant and human. The 
systems are complex, and due to safety, the procedures 
involves conservative settings.

Non-optimal production will appear frequent due to process 
events, slugs, well start/stop, trips, etc..

Opportunity a) Adaptive process control* can enhance the plant 
performance. This is standard technology from the SAS 
vendors, and have been on the market for many years. 
Also proprietary (operator made) solutions exists.

b) Process Digital twins are fieldwide (or part process) 
simulators running in parallel to plant – “guiding & 
advising” the operators. The models can cover the whole 
field, or a small part of the plant (e.g. virtual flow 
meetings, energy usage, slug handling, etc.). These 
models can be semi static (linearized & response surface 
based) or fully dynamic.

Benefit for 
the O&G 
industry

▪ Adaptive process control: Cases have shown 2 to 5% 
improvement in total production volumes.

▪ DTw-Energy savings: promising results for better energy 
performance of plants by avoiding “controllable” losses.

▪ DTw-Control room assistance to handle events and 
alarms: reported 3-8% production improvement via 
avoiding trips.

▪ Well control (choke and valve settings): significant 
volumes can be achieved, primary manual process today.

DTw (Digital Twin) and ML:

DTw should primary be based on physical 

models; either directly or simplified. ML, AI, 

knowledge based models can enhance 

performance.

Barriers:

▪ ML perceived as black-box giving lack of 

user acceptance.

▪ Models too heavy to run faster than real 

time – “smarter” solutions needed.

▪ Cost of development for large scale 

simulators vs business potential.

Enablers:

▪ Control systems enabling adaptive control

▪ Computer power and networks capacity

▪ Current process simulators exists for most 
fields and is a good starting point for real 
time DTw development

Risks:

▪ If all the processes are automatic, the 
operators will get less situational 
awareness as they don't train on difficult 
situations.  But if good implementation is 
done, the operator can see the bigger 
picture and keep control on other thing 
than the machine can. 

* Defined as a type of ML

Average production Loss by Category 
from 2015 – 2017
Actual production vs MPP (Max Production Potential)

2,4

1,2

1,6

2,5

1,9

6,3 Plant failure

Plant planned

Turnaround

Wellwork

Reservoir

Export

Source: McKinsey
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TTA4.4: Logistics and integrated planning
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Challenge Transport cost and energy usage is significant. Collaborative 
efforts has been tested but it is believed that the potential is 
not exploited.

SIMPOS and Waiting time is a challenge related to new 
development/installation and modifications.

Optimal operational based transport to/from installations can 
be optimized.

Opportunity Transport/installation: ML can be used to optimise usage 
of supply vessels depending on sailing time, weather data, 
sailing speed VS fuel consumption and time spent at 
installation.

Spare: ML used for identification of correct spares (and 
alternative spares) from vendor data.

Logistics include all offshore activities like production, 
maintenance, drilling, modifications, installation work, 
logistic. Constraints are PoB, transport capacity, cost, etc..

Share data and services related to transport for:

▪ SIMOPS solutions resulting in Reduction of waiting time 
and improved safety

▪ Collective solutions between licences

▪ Sharing of transport resources

Logistic cost: ca; 4 bNOK/year

Benefit for 
the O&G 
industry

▪ Reduced logistic cost

▪ Reduced waiting time

▪ Reduced emissions

▪ Potential not quantified at this stage.

DTw (Digital Twin) and ML:

Logistics models in combination with ML may 

be a solution. 

Barriers:

▪ The licences are autonomous with its own 

budgets

▪ Priority and planning is complex if several 

users are to be served

Enablers:

▪ Connectivity between ships, operations 
centres and base is well developed and in 
use

Risks:

▪ No significant risks
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Production optimization/ML; Cases: 

Case WHO Effect Development stage

Process Adaptive control – MPP enhancement via 
more stable process running closer to max capacity. 

Equinor, Lundin
ABB & Honeywell 

2-5% production increase Industrialized and in use

Virtual flow meters for well control
AkerBP, Cognite, 
TFMC

Reservoir management related to sub-sea 
tieback.  Optimisation of well testing, prioritize 
of wells production. 

Pilot 

Energy monitoring, and energy loss assessment.  
On-line to control room for immediate action.

Lundin
Reduction of energy usage by 15-20% for key 
energy consumers. 

Pilot

Flow management; slug handling – prediction and 
control of how to avoid process upsets

Lundin, Aker BP, 
Cognite

Stable high production with less disturbances. 
Industrialized and in use

Process Digital Twin: Failure/trip avoidance and 
alarm handling via process DTw

Kairos for Equinor, 
Repsol, Total

3-8% production enhancement First application 

Water contamination detection AkerBP & Cognite Pilot 

CBM Digital Twin: Large turbine monitoring by 
means of digital twins applying ML/Adaptive learning 
(Smart Signal by Baker Hughes)

ConocoPhillips Early detection of anomalies. 
Industrialized, and used for 10+ 
years globally. 
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DNV GL ©

What are Digital Twins?

# Category Type Usage ML enabled

A Design and 
manufacturing twins 

▪ Discipline oriented: (process, safety 
& environment,  
structural/environmental impact, 
flow assurance,…

▪ Detailed Design, engineering tools, 
tailored to individual plants.

▪ A subset, e.g. 3D models used during 
operation. 

Limited

B Operation 
Performance based –
on-line

▪ Field wide or sub-models for 
dedicated purpose

▪ Standalone solutions
▪ Integrated with control system

▪ Decision support; operator assistance
▪ Anomaly detection 
▪ Energy management 
▪ Process optimising – stability, 

start/stop, process control.

AI, ML, and data 
analytics applied

C Operation 
Performance based –
off-line

Engineering tools to analyse 
performance, debottleneck. Similar to 
A)

Engineering analysis of performance, 
engineering changes based on 
operational data
Reservoir management.

Limited

D Operation -
Condition based 
(CBM) & predictive 
maintenance 

On-line measurement of equipment 
degradation and prediction of time to 
failure

▪ Alarm in control room
▪ Anomaly detection 
▪ Maintenance planning

Common to use 
AI and ML

E Reservoir models Reservoir models including 4D seismic 
can be viewed as a digital twin 
solution. 

▪ Monotiling of reservoir drainage
▪ Injection planning
▪ Estimation of water breakthrough

Limited

Digital Twin is a virtual representation of a system or physical asset, that makes system information available 
or predicts performance through integrated models and data, with the purpose of providing decision support.

65



DNV GL ©

Evolutionary stages / Ambitions of digital twins
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…see definitions next page
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Digital Twin – different levels of maturity

67

Level 0 - Standalone: The DT will typically consist of multiple models with the purpose of 

supporting decision making during the different engineering and design phases. This includes 

graphical models, bill of materials, multidomain modelling to support simulations and virtual 

tests for design verification, manufacturing and operation prior to putting the asset into 

operation. Several models may be combined into a system of systems in order to simulate the 

interaction between these systems as well as external interfaces such as the environment or 

other systems. This level provides a standalone description of the system, disconnected from 

the real environment. 

Level 1 - Descriptive: The collection of models, engineering data and information generated 

in level 0, are aggregated with live sensor data from the real system to be contextualized and 

structured including all relevant links from the real world [31]. The DT can describe the real 

system, providing status, alarms and events, based on the integrated live data at a basic level. 

Offline operations and maintenance data up to date, shall be synchronized as soon as 

information is available. At this level the DT instances shall be able to be interrogated and 

provide information about its current and past histories. Dashboards, 3D models, interactive 

drawings integrated with live data, among others may be part of the visualization tools at this 

level. Basic monitoring and fault detection to support descriptive capabilities may be available, 

based on limit checking, trend checking and pre-defined acceptance criteria checking. The 

contextualized and structured information from disparate data sources, together with the 

visualization tools, may facilitate monitoring tasks to operators and technical experts.

Level 2 - Diagnostic: This level contains all contextualized data and information included in 

level 0 and 1. In addition the DT can learn, adapt and evolve continuously with Real Time data 

beyond supporting snapshots from the visualization system or historical information. At this 

level, dynamic models with adaptive capabilities shall be available, and the construction of 

models to support health indexes and condition indicators are important [11]. Diagnostic 

information shall be incorporated within the visualization tools. Therefore, capabilities available 

at this level are able to support operators and technical experts on equipment and process 

condition monitoring, fault finding and troubleshooting tasks.

Level 3 - Predictive: This level contains all contextualized data, information, models and 

capabilities included in level 0, 1 and 2. In addition, the DT contains aging, degradation, short-

and long-term evolution models to predict future states based on current status and histories 

from multiple instances. This level shall have the ability to predict process and equipment 

performance as well as remaining useful life. Health indexes and condition indicators are further 

enriched to support prognostic capabilities. Prognostic information shall also be available within 

the visualization tools, suitable for different prediction horizons within the remaining lifetime. 

DT capabilities at this level are able to support operators and technical experts with process and 

equipment condition-based assessment and predictive maintenance tasks. Depending on the 

application, this level could also include prescriptive capabilities. Alternatively, they can be fully 

developed in level 4.

Level 4 - Prescriptive: This level contains all contextualized data, information, models and 

capabilities included in level 0, 1, 2 and 3. In addition the DT is equipped with prescriptive 

analytics to support recommended actions based on the available predictions, including the 

implications of each decision option [37] and how to optimize the future actions without 

compromising other priorities. This level may support multiple scenario simulations, 

improvements and optimizations within asset operations, equipment maintenance, repairs, risk 

mitigation as well as business decision making. These capabilities may also support remote 

operations of minimum manned or unmanned facilities.

Level 5 - Autonomous: This level contains all contextualized data, information, models and 

capabilities included in level 0, 1, 2, 3 and 4. In addition the DT can replace operators or 

technical experts directly by closing the loops to make decisions and execute control actions or 

tasks that can be completely automated.
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Overview of interviews 
and workshops conducted 

68
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Overview of interviews and workshops conducted 

Workshops:

▪ TTA 1 – 28th April

▪ TTA 2 – 21st April

▪ TTA 3 – 23rd April

▪ TTA 4 – 29th April

Interviews

Period May 4th – June 11th

Interviewees:

Aker BP, Prashant Kumar Soni, Kjell Kristian Ask, Christian 

Borsheim Jacobsen

Arundo, Tor Jakob Ramsøy, Martin Lundqvist

Cognite: Jon M Lervik, Petter Jacob Jacobsen, Carlo Caso

COP, Jonas Rydland, Mayo Kiritharan, Mike Herbert

Dataiku, Florian Douetteau

Digital Norway, Helge Dahl-Jørgensen, Trond Moengen, Eirik 

Andreassen

DNV GL, Erik Østby, Pål Rylandsholm

Earth Science Analytics, Eirik Larsen

eDrilling, Anwesha Mal

Equinor, John-Morten Godhavn, Bernt Edvard Tysseland, Merete 

Lunde, Florian Schuchert, Christian Collin-Hansen, Jens 

Grimsgaard, Harald Laastad, Carl Fredrik Eek-Jensen, Fakhri 

Landosi

Halliburton, Rob Berendsen, Chafaa Badis, Margareth Gibbons

Kongsberg Digital, Shane McArdle, Eivind Rosen Eide

Lundin, Kim Jørgensen, Stein Erik Hilmersen, Jan Erik Lie, 

Erik Tveit

Microsoft, Christian Tryti

NPD, Arne Holhjem

NTNU, Egil Tjåland, Asgeir Sørensen, Alexey Pavlov, Lars 

Imsland, Kenneth Duffaut, Jørn Vatn, Andrei Lobov

Petoro, Erik Søndenå, Roy Ruså

Sekal, Egil Stranden, Asbjørn Sola

Shell, Rolf Einar Sæter

Schlumberger, Trygve Randen

Solution Seeker, Vidar Gunnerud 

Stanford, Hamdi Tchelepi, Biondo Biondi, Margot Gerritsen

TechnipFMC, Dag Ljungquist

UiO, David Cameron

UiT, Torbjørn Eltoft

4Subsea, Christoffer Nilsen-Aas
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Reference material
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Main sources of reference material

▪ Nasjonal strategi for kunstig intelligens, (KMD, 2020).

▪ Veikart for Norsk Olje og Gass (NOROG, expected March 2020).

▪ Digitale grep for norsk verdiskaping (Digital21, 2018)

▪ Konkurransekraft – norsk sokkel i endring (Konkraft, 2018).

▪ WE Forum digital transformation, Oil&Gas specific report (WE Forum, 

2017).

▪ Energi21, Digitalisering av energisektoren Anbefalinger om forskning 

og innovasjon (2020)

▪ NPD, Resource Report for Discoveries and Fields 2019 

▪ Oil & Gas for the 21st century, Strategy Document, OG21

▪ NPD; Costs relates to operation and drilling activities for NCS

▪ BRU21 Better Resource Utlization in the 21st century

▪ Annual report 2019, BRU21, NTNU Research and Innovation in Digital 

and Automation Solutions for the Oil and Gas Industry

▪ BCG, Capturing Norway’s Digital Opportunity, NORWAY AS A DIGITAL 

HUB FOR OIL AND GAS AND OTHER ASSET-HEAVY INDUSTRIES 

(2019)

▪ Digital Transformation Initiative Oil and Gas Industry, World Economic 

Forum (2017)

▪ De nasjonale forskningsetiske kommiteene, Forskningsetisk 

betenkning om kunstig intelligens (2019)

▪ Rapport fra ekspertgruppen for datadeling i næringslivet (2020)

▪ Teknologirådet, Kunstig Intelligens, Muligheter, utfordringer og en plan 

for Norge (2018)

▪ Datatilsynet, Kunstig intelligens og personvern (2018)

▪ Forskningsrådet, Effekter av Forskningsrådets målrettede aktiviteter 

innen petroleum (2020)
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Terminology

agent (in reinforcement learning) : a part of learning 

algorithm which makes observations and take actions within 

an environment, and in return it receives rewards. Its 

objective is to learn to act in a way that will maximize its 

expected long-term rewards (Geron, 2017). Source: Geron, 

Aurelion, 2017. Hands-on machine learning with Scikit-Learn 

& Tensorflow. O’Reilly, USA.

algorithm* : generic term for a set of instructions, typically 

implemented as computer code, which perform a specific task. 

The code which takes training data and produces a model is 

itself an algorithm, but in this RP algorithm is used a synonym 

for model. 

application* : piece of software intended to be used for a 

specific, defined, purpose. See also data-driven application.

data-driven application* : application which includes at 

least one data-driven model. The parameters and 

configuration of a data-driven model are automatically 

determined (or learned) from data using a suitable algorithm.

data-driven model* : model which is made by applying a 

suitable training algorithm to a set of data.

first-principle model : a model which is developed based on 

nature/physical laws, such as mass balance, energy balance, 

heat transfer relations, and so on; rather than primarily on 

data. 

machine learning* : subfield of AI concerned with 

performing a specific task without using explicit instructions.

model* : computer-based representation of some process 

and/or entity, which is typically used to make predictions 

and/or other useful transformations of input data.
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Background data and calculations for potential ML estimates (1 out of 2)

75

Application areas (TTA): Key opportunities Unadjusted (ML) Potential PoS Data basis Potential reduction

1
Energy efficiency 
and environment

Process digital twin energy savings: 
promising results for better energy 
performance of plants by avoiding 
“controllable” losses

÷10% GHG reduction 

10% figure from ML applied business 

case from interviews 

~70%

14.2 Mega tonn CO2/yr
gassturbin; 11.6
(14.2 million ton)
1 Mt = 1000.000.000 kg.

0.9 Mt CO2/yr

2
Exploration and 
increased recovery

Better reservoir management 

ML is unbiased, thus offer an opportunity 
for more objective reservoir modeling. 

Faster model update (50%). 

Reduced time and manning in 
operations phase estimated to 
200 MNOK per year based on 
feedback from interviews. 

50%
• 50% PoS

100 MNOK per year reduced OPEX 
considering 50% PoS

2
Exploration and 
increased recovery

About 4 months accelerated production 
due too faster seismic processing and 
interpretation. 

Better understanding of prospects and 
better basis for decision to drill.

About 20% reduction in required 
resources per prospect

Better drilling decisions using ML 
in exploration leading to one 
additional discovery per year. 

90%

• Average 8 required resources per prospect
• 2 MNOK per resource
• 20 prospects

• Average size of 5 million SM3 o.e. 
(conservative estimate based on “OD 
ressursrapport 2018”) 

• 60 MNOK reduced appraisal cost per 
year 

• 5 million SM3 o.e. additional 
discovery per year

2
Seismic processing and 
interpretation

Reduced lead
time for seismic
processing and
Interpretation

20% reduced time from 
procurement of seismic to 
decision to drill 

90%

• 20% reduced time from procurement of seismic to decision to drill based on feedback 
from interviews indicating at least a factor 10 reduction in time and effort for seismic 
processing and interpretation

• On average about 20 months (ref. NPD Arbeidsprogram / vilkår) from procurement of 
seismic to decision to drill

• 20% of 20 months equals 4 months accelerated production 
• Assuming 5 new discoveries per year with an average size of 5 million SM3 o.e. 

(conservative estimate based on “OD ressursrapport 2018”) and that all these 
discoveries will be developed (5 per year). This corresponds to a yearly accelerated 
production of 1 mill SM3 o.e. the first year. The effect will be diminished and cancelled 
out over time when the first developments fall off plateau. The value of the accelerated 
production is small since the entire project (including the cost) is accelerated.
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Background data and calculations for potential ML estimates (2 out of 2)

76

Application areas (TTA): Key opportunities Unadjusted (ML) Potential PoS Data basis Potential reduction

3
Drilling, completions and 
intervention

ML applied in autonomous drilling and 
parameter optimization to increase 
efficiency. 

20% reduction of well delivery time

20% reduction in sidetracks

Sidetracks required in 20% of wells 

20% figure from ML applied business cases 

from interviews 

~80%
Drilling cost=rig hire= 300 k$/day; 70 
days/well, 130 wells/year, 
8 NOK/USD

Tot saving: ca. 3-4 bNOK/year 

GHG reduction of 0.06 Mega ton, 
representing 6% of drilling activities 
release (1.06 Mega ton)

4
CBM, Predictive 
maintenance

▪ Reduced unplanned expensive 
repairs

▪ More optimized  and streamlined PM 
program

▪ More condition based maintenance

OPEX: 15% reduction - Less costly 
failures 
- Less frequent 
inspection/testing/maintenance based on 
DNV GL experience

60%

21 bNOK/year
includes
▪ Maintenance excluding wells
▪ Well maintenance
▪ Subseea operations and 

maintenance

2 bill NOK/year 

4
CBM, Predictive 
maintenance

ML applied for 

▪ Early warning avoiding prolonged 
shutdown, 

▪ Extending intervals for PM intervals 
requiring shutdown

1,5% accelerated production 1/3 reduction 
in unplanned losses
- 25% reduced losses in planned 

losses

based on DNV GL experience

60%

Total production 214 mill Sm3 o.e 
(2019)
6% unplanned failures
2% loss planned maintenance

2 mill Sm3 o.e. 

4 Production optimization
▪ ML applied for production 

optimization

Assumed 5% additional accelerated 

production potential to Maximum Production 

Potential through ML applied in well 

optimization and adaptive control

60%
Total production 214 mill Sm3 o.e 
(2019)

6 mill Sm3 o.e.
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