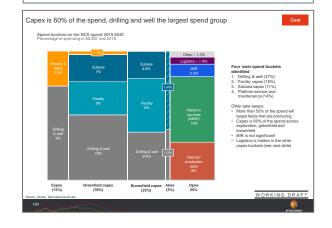
Technologies to improve NCS competitiveness – what's at stake?

OG21 Forum Oslo November

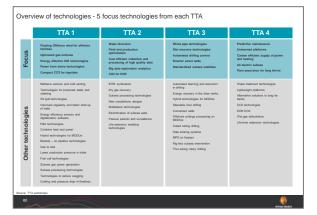
This document is the property of Rystad Energy. The document must not be reproduced or distributed in any forms, in parts or full without permission from Rystad Energy. The information contained in this document is based on Rystad Energy's global oil & gas database UCUBE, public information from company presentations, industry reports, and other, general research by Rystad Energy. The document is not intended to be used on a stand-alone basis but in combination with other material or in discussions. The document is subject to revisions. Rystad Energy is not responsible for actions taken based on information in this document.


Rystad Energy report on technologies to improve NCS competitiveness – purpose and focus

Element	Content	Key Exhibits
A Future oil/gas demand	 Demand projection research Development of reference and low carbon cases 	<section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><image/></list-item></list-item></list-item></list-item></section-header></section-header></section-header></section-header></section-header>
B NCS competitive- ness	 NCS's current competitive ability (break-even, lead time, carbon) Recent years' competitive improvement assessment Future competitive ability given oil/gas demand scenarios 	<text></text>
C High impact technology areas assessment	 Assessment of technology areas that address competitive ability on: Cost Volumes Carbon emissions 	

Bucket analysis Understand volume, cost and emission drivers on the NCS

- The outset for any technology evaluation is to find the application area. The larger the application area the larger potential of the technology
- Prepared for TTA workshops to aid the selection of focus technologies with high effect
- Investigated the largest buckets of volumes, spend and emissions on the NCS in a 2020-2050 timeframe.



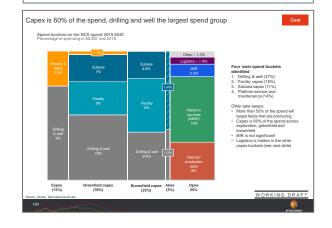
Source: Rystad Energy research and analysis

Suggest focus technologies for evaluation Four TTA workshops


- 4 half-day workshops held with each TTA group.
 - TTA 1: Energy efficiency and environment
 - TTA 2: Exploration and improved recovery
 - TTA 3: Drilling, completion and intervention
 - TTA4: Production, processing and transport
- Selected a set of focus technologies that could have large effect on improving NCS competitiveness

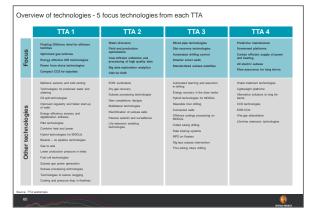
Provided input assumptions into the evaluation

Evaluate focus technologies Analyze effect of NCS in the period 2020-2050


- Simplified business case evaluation of each technologies effect on the NCS in the period between 2020-2050.
 - Assed the technologies' potential to increase/accelerate volumes, reduce cost and reduce emissions
 - · Short term and long term effects evaluated for each technology.
- Additional interviews and workshops conducted to understand application potential of each technology.

Bucket analysis Understand volume, cost and emission drivers on the NCS

- The outset for any technology evaluation is to find the application area. The larger the application area the larger potential of the technology
- Prepared for TTA workshops to aid the selection of focus technologies with high effect
- Investigated the largest buckets of volumes, spend and emissions on the NCS in a 2020-2050 timeframe.



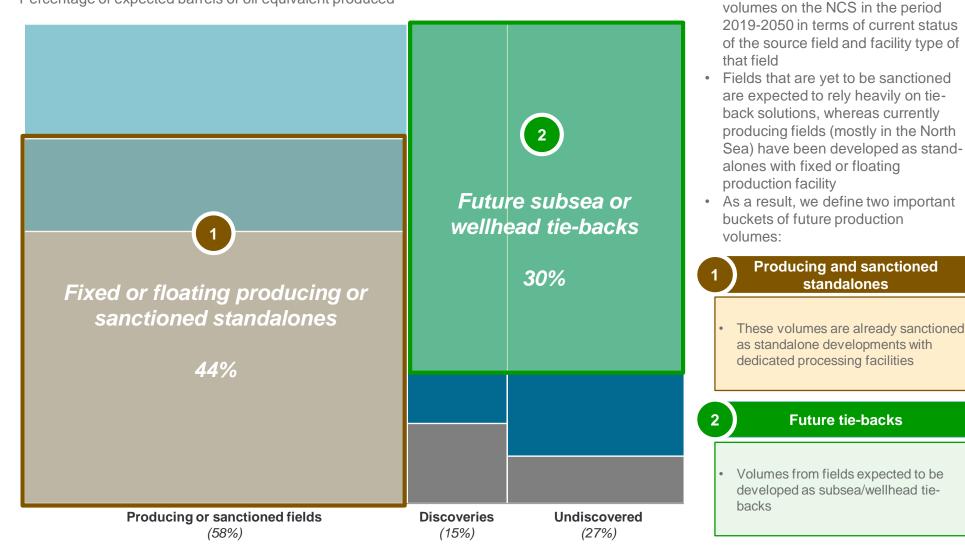
Source: Rystad Energy research and analysis

- 4 half-day workshops held with each TTA group.
 - TTA 1: Energy efficiency and environment
 - TTA 2: Exploration and improved recovery
 - TTA 3: Drilling, completion and intervention
 - TTA4: Production, processing and transport
- Selected a set of focus technologies that could have large effect on improving NCS competitiveness

Provided input assumptions into the evaluation

Evaluate focus technologies Analyze effect of NCS in the period 2020-2050

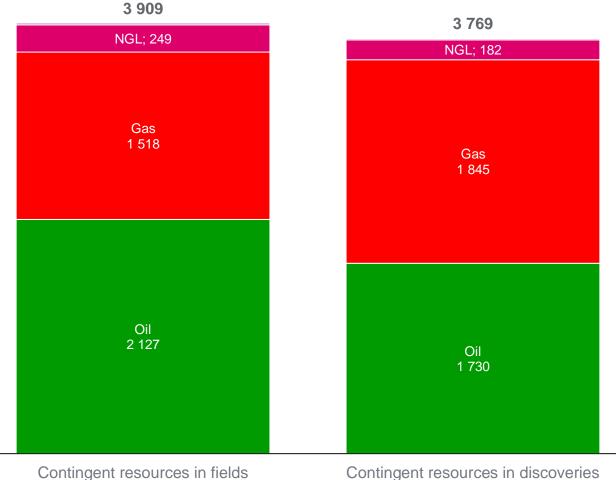
- Simplified business case evaluation of each technologies effect on the NCS in the period between 2020-2050.
 - Assed the technologies' potential to increase/accelerate volumes, reduce cost and reduce emissions
 - Short term and long term effects evaluated for each technology.
- Additional interviews and workshops conducted to understand application potential of each technology.



Preliminary analysis on effects of prioritized technologies

· The chart outlines production

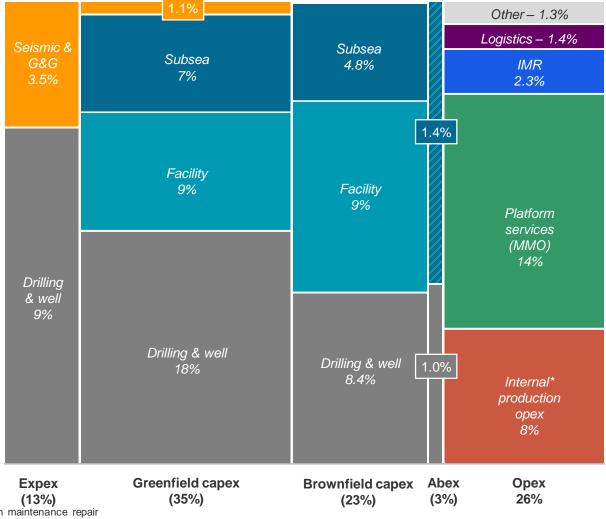
Volume buckets on the NCS between 2019-2050 Percentage of expected barrels of oil equivalent produced



Source: Rystad Energy UCube

Upside in existing rivals potential in discoveries underlining the importance of our hubs **Volumes**

NPD contingent resources as of 31 December 2017 Million boe


Contingent resources in discoveries

- The chart outlines NPDs accounts of contingent resources - resources that have been identified but are yet to be sanctioned
- · Interestingly, current identified volume potential in fields is larger than in the combined portfolio of discoveries
- Moreover, non-sanctioned liquids resources in existing fields account for 31% of total contingent resources
- · Thus, technology increasing oil recovery in existing fields (where infrastructure is already in place) will have a large impact.

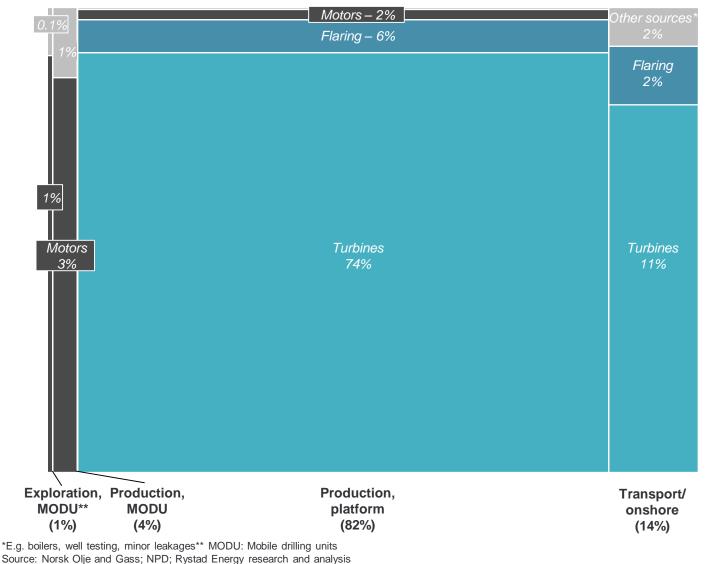
Source: NPD Resource Report 2018

Spend buckets on the NCS spend 2019-2040 Percentage of spending in MUSD real 2018

Four main spend buckets identified

- 1. Drilling & well (37%)
- 2. Facility capex (18%)
- 3. Subsea capex (11%)
- 4. Platform service and maintenance (14%)

Other takeaways:

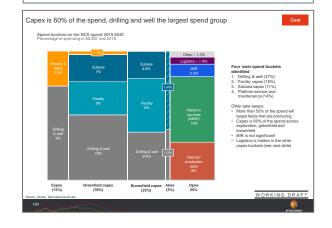

- More than 50% of the spend will target fields that are producing
- Capex is 60% of the spend across exploration, greenfield and brownfield
- IMR* is not significant
- Logistics is hidden in the other capex buckets (see next slide)

(13%) *IMR: inspection maintenance repair Source: UCube, ServiceDemandCube

Fuel combustion in gas turbines constitutes 85% of upstream CO₂

Upstream and midstream CO₂ emissions from the NCS in 2017, by emission source and activity [% of the total 13.2 Mt CO₂ emitted]

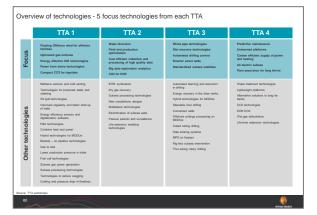
• The chart outlines CO₂ emissions from the NCS in 2017 in terms of activity and the emission source.


 Activity is defined as in which stage the emissions took place: Either exploration drilling from a drilling unit, in the production stage of a specific field – either from a drilling unit or a platform, or during transport/onshore. The latter bucket is due to NOROG including some onshore activity (e.g. Melkøya) and transport from onshore facilities (e.g. Kårstø) in their upstream reporting, although this is usually considered as part of midstream activities.

- Emission sources are split by four: Turbines, flaring, motors and other sources such as boilers and well testing.
- Platforms on producing fields are by far the largest emitters, and turbines made up 74% of the CO₂ emitted from platforms on the NCS in 2017.

Bucket analysis Understand volume, cost and emission drivers on the NCS

- The outset for any technology evaluation is to find the application area. The larger the application area the larger potential of the technology
- Prepared for TTA workshops to aid the selection of focus technologies with high effect
- Investigated the largest buckets of volumes, spend and emissions on the NCS in a 2020-2050 timeframe.



Source: Rystad Energy research and analysis

Suggest focus technologies for evaluation Four TTA workshops

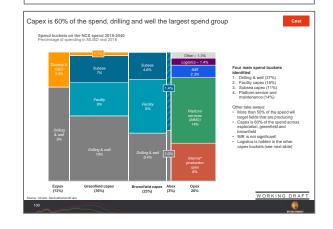
- 4 half-day workshops held with each TTA group.
 - TTA 1: Energy efficiency and environment
 - TTA 2: Exploration and improved recovery
 - TTA 3: Drilling, completion and intervention
 - TTA4: Production, processing and transport
- Selected a set of focus technologies that could have large effect on improving NCS competitiveness

Provided input assumptions into the evaluation

Evaluate focus technologies Analyze effect of NCS in the period 2020-2050

- Simplified business case evaluation of each technologies effect on the NCS in the period between 2020-2050.
 - Assed the technologies' potential to increase/accelerate volumes, reduce cost and reduce emissions
 - Short term and long term effects evaluated for each technology.
- Additional interviews and workshops conducted to understand application potential of each technology.

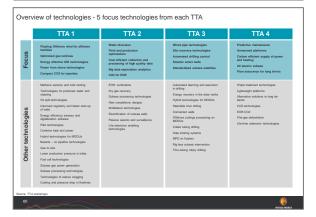
Preliminary analysis on effects of prioritized technologies


17 focus technologies – many of the same technologies selected across the TTA groups

	Technology area	TTA1	TTA2	TTA3	TTA4
ant ent	Offshore wind for offshore facilities				
TTA1 Energy efficiency and environment	Optimized gas turbines				
TTA1 Prgy effic	Power from shore technologies				
Ene	Compact CCS for topsides				
nd /ery	Water diversion				
TTA2 oration a /ed recov	CO ₂ for EOR				
TTA2 Exploration and improved recovery	Field model optimization				
impi	Big data exploration analytics				
știon on	Wired pipe technologies				
TTA3 J, comple nterventi	Slot recovery technologies				
TTA3 Drilling, completion and intervention	Automated drilling control				
Drill an	Smarter smart wells				
sing	Predictive maintenance				
ocess	Unmanned platforms				
TTA4 uction, proces and transport	Standardized subsea satellites				
TTA4 Production, processing and transport	All electric subsea				
Pro	Flow assurance				
NPT: Non-product	ve time TTA workshops; Rystad Energy research and analysis Chosen Suggeste	ed			

Bucket analysis Understand volume, cost and emission drivers on the NCS

- The outset for any technology evaluation is to find the application area. The larger the application area the larger potential of the technology
- Prepared for TTA workshops to aid the selection of focus technologies with high effect
- Investigated the largest buckets of volumes, spend and emissions on the NCS in a 2020-2050 timeframe.



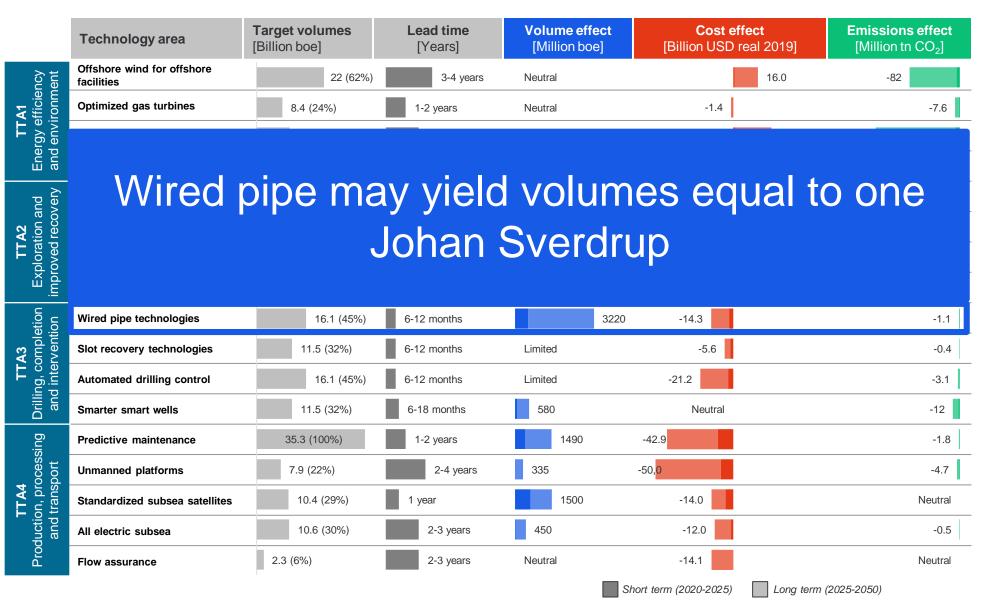
Source: Rystad Energy research and analysis

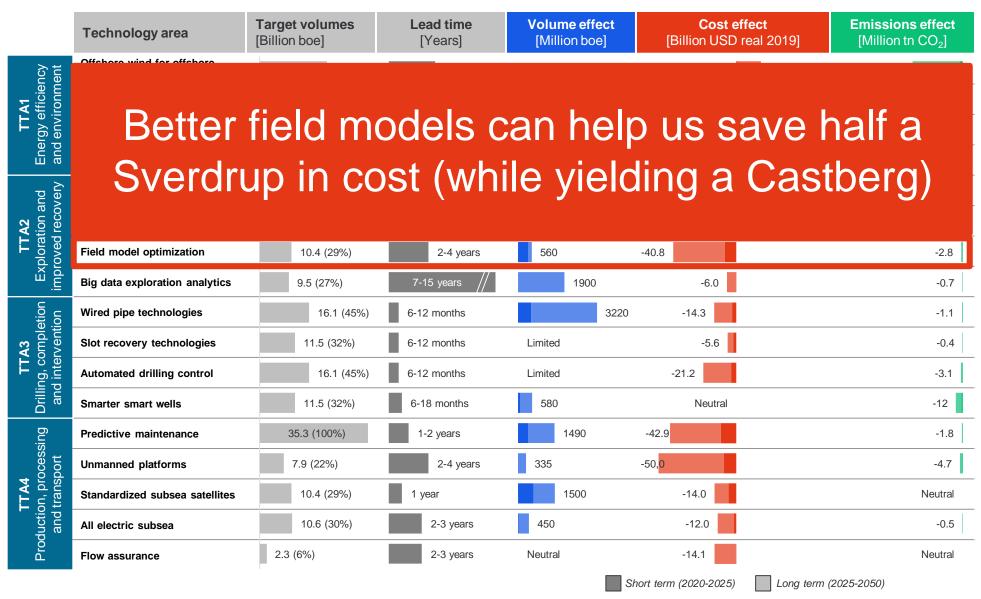
- 4 half-day workshops held with each TTA group.
 - TTA 1: Energy efficiency and environment
 - TTA 2: Exploration and improved recovery
 - TTA 3: Drilling, completion and intervention
 - TTA4: Production, processing and transport
- Selected a set of focus technologies that could have large effect on improving NCS competitiveness

Provided input assumptions into the evaluation

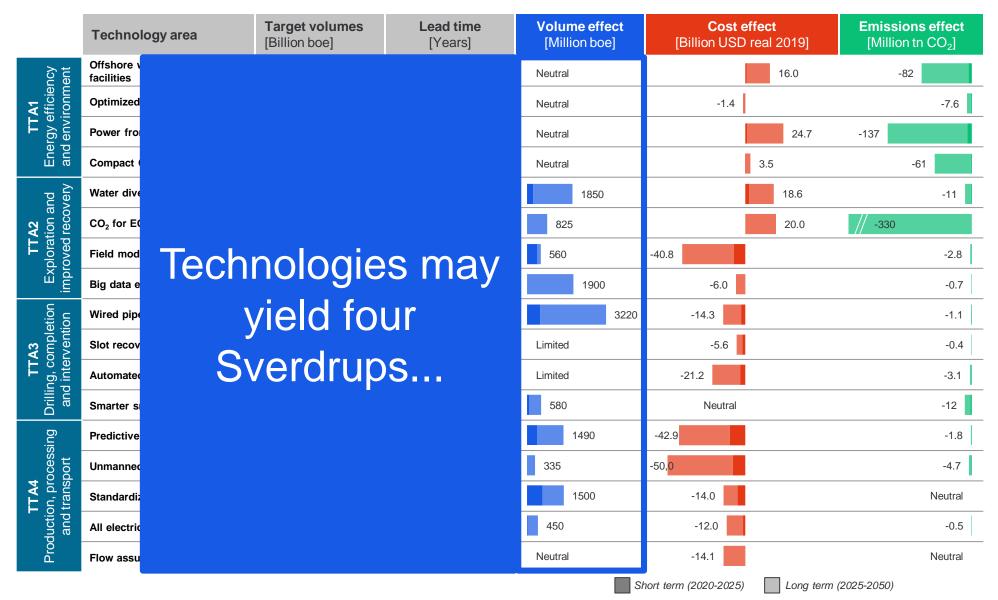
Evaluate focus technologies Analyze effect of NCS in the period 2020-2050

- Simplified business case evaluation of each technologies effect on the NCS in the period between 2020-2050.
 - Assed the technologies' potential to increase/accelerate volumes, reduce cost and reduce emissions
 - Short term and long term effects evaluated for each technology.
- Additional interviews and workshops conducted to understand application potential of each technology.


Preliminary analysis on effects of prioritized technologies


	Technology area	Target volumes [Billion boe]	Lead time [Years]	Volume effect [Million boe]	Cost eff [Billion USD re		Emissions effect [Million tn CO ₂]
TTA1 Energy efficiency and environment	Offshore wind for offshore facilities	22 (62%)	3-4 years	Neutral		16.0	-82
	Optimized gas turbines	8.4 (24%)	1-2 years	Neutral	-1.4		-7.6
TT ergy e d envi	Power from shore technologies	10.8 (31%)	2-3 years	Neutral		24.7	-137
Ene anc	Compact CCS for topsides	7.2 (20%)	2-4 years	Neutral		3.5	-61
und very	Water diversion	18.5 (52%)	1-2 years	1850		18.6	-11
TT A2 Exploration and improved recovery	CO₂ for EOR	18.5 (52%)	5-7 years	825		20.0	// -330
TT plora roved	Field model optimization	10.4 (29%)	2-4 years	560	-40.8		-2.8
imp.	Big data exploration analytics	9.5 (27%)	7-15 years //	1900	-6.0		-0.7
etion ion	Wired pipe technologies	16.1 (45%)	6-12 months	3220	-14.3		-1.1
TTA3 Drilling, completion and intervention	Slot recovery technologies	11.5 (32%)	6-12 months	Limited	-5.6		-0.4
TT ing, c d inte	Automated drilling control	16.1 (45%)	6-12 months	Limited	-21.2		-3.1
Drilli ano	Smarter smart wells	11.5 (32%)	6-18 months	580	Neutral		-12
sing	Predictive maintenance	35.3 (100%)	1-2 years	1490	-42.9		-1.8
port	Unmanned platforms	7.9 (22%)	2-4 years	335	-50, <mark>0</mark>		-4.7
TTA4 Production, processing and transport	Standardized subsea satellites	10.4 (29%)	1 year	1500	-14.0		Neutral
ductic and	All electric subsea	10.6 (30%)	2-3 years	450	-12.0		-0.5
Pro	Flow assurance	2.3 (6%)	2-3 years	Neutral	-14.1		Neutral
	-				Short term (2020-2025)	Long term	(2025-2050)

	Technology area	Target volumes [Billion boe]	Lead time [Years]	Volume effect [Million boe]	Cost effect [Billion USD real 2019]	Emissions effect [Million tn CO ₂]	
ncy ent	Offshore wind for offshore facilities	22 (62%)	3-4 years	Neutral	16.0	-82	
A1 fficier ronmo	Optimized gas turbines	8.4 (24%)	1-2 years	Neutral	-1.4	-7.6	
TTA1 Energy efficiency and environment	Power from shore technologies	10.8 (31%)	2-3 years	Neutral	24.7	-137	
Ene anc	Compact CCS for topsides	7.2 (20%)	2-4 years	Neutral	3.5	-61	
und very	Water diversion	18.5 (52%)	1-2 years	1850	18.6	-11	
TTA2 Exploration and improved recovery	CO ₂ for EOR	18.5 (52%)	5-7 years	825	20.0	// -330	
brd							
	megaton	s of CC tota	D_2 to 20)50 – s	ix times N 2018	lorway's	
TTA3 Drilling, completion and intervention		s of CC tota	D ₂ to 20 I emiss)50 – s sions in	ix times N 2018	lorway's	
TTA3 Drilling, completion and intervention	megaton	s of CC tota	D_2 to 20)50 – s	ix times N 2018	lorway's	
TTA3 Drilling, completion and intervention	Smarter smart wens Predictive maintenance	s of CC tota 11.5 (5270) 35.3 (100%)	D ₂ to 20 l emiss 1-2 years)50 – s sions in	ix times N 2018 -42.9	Jorway's -1.8	
TTA3 Drilling, completion and intervention	Smarter smart wens Predictive maintenance Unmanned platforms	S of CC tota 11.5 (52.%) 35.3 (100%) 7.9 (22%)	D ₂ to 20 lemiss 1-2 years 2-4 years)50 – s sions in 1490 335	ix times N 2018 -42.9 -50,0	Jorway's -1.8 -4.7	
TTA3 Ssing Drilling, completion and intervention	Interstant webs Predictive maintenance Unmanned platforms Standardized subsea satellites	S of CC tota 11.5 (52.70) 35.3 (100%) 7.9 (22%) 10.4 (29%)	D ₂ to 20 lemiss 1-2 years 2-4 years 1 year)50 — s sions in 1490 335 1500	ix times N 2018 -42.9 -50,0 -14.0	Jorway's -12 -1.8 -4.7 Neutral	


RYSTAD ENERGY

Source: Rystad Energy research and analysis

RYSTAD ENERGY

Dffshore wind for offshore acilities Dptimized gas turbines				-	
				16.0	-82
				-1.4	-7.6
Power from shore technologies				24.7	-137
Compact CCS for topsides				3.5	-61
Nater diversion				18.6	-11
CO₂ for EOR				20.0	// -330
Field model optimization				-40.8	-2.8
Big data exploration analytics	whil	e savir	na one	-6.0	-0.7
Wired pipe technologies				-14.3	-1.1
Slot recovery technologies	Natio	nal Bu	dget	-5.6	-0.4
Automated drilling control			Ŭ	-21.2	-3.1
Smarter smart wells				Neutral	-12
Predictive maintenance				-42.9	-1.8
Jnmanned platforms				-50, <mark>0</mark>	-4.7
Standardized subsea satellites				-14.0	Neutral
All electric subsea				-12.0	-0.5
Flow assurance				-14.1	Neutral
Si S	D ₂ for EOR eld model optimization g data exploration analytics ired pipe technologies ot recovery technologies utomated drilling control marter smart wells edictive maintenance manned platforms andardized subsea satellites I electric subsea	D ₂ for EOR eld model optimization g data exploration analytics ired pipe technologies ot recovery technologies utomated drilling control marter smart wells edictive maintenance manned platforms andardized subsea satellites I electric subsea	D ₂ for EOR eld model optimization g data exploration analytics ired pipe technologies ot recovery technologies utomated drilling control marter smart wells edictive maintenance manned platforms andardized subsea satellites	D2 for EOR eld model optimization g data exploration analytics ired pipe technologies ot recovery technologies atomated drilling control marter smart wells edictive maintenance imanned platforms andardized subsea satellites I electric subsea ow assurance	D2 for EOR 0.0 eld model optimization 0.0 g data exploration analytics

Source: Rystad Energy research and analysis

	Technology area	Target volumes [Billion boe]	Lead time [Years]	Volume effect [Million boe]	Cost effect [Billion USD real 2019]	Emissions effect [Million tn CO ₂]
ncy ent	Offshore wind for offshore facilities	22 (62%)	3-			-82
TA1 efficie vironm	Optimized gas turbines	8.4 (24%)	1-2 year			-7.6
TTA1 Energy efficiency and environment	Power from shore technologies	10.8 (31%)	2-3 y			-137
Ene and	Compact CCS for topsides	7.2 (20%)	2-4			-61
and very	Water diversion	18.5 (52%)	1-2 yea			-11
TTA2 Exploration and improved recovery	CO ₂ for EOR	18.5 (52%)	5-7 years			// -330
TT (plora rovec	Field model optimization	10.4 (29%)	2-4	and 1	2 years	-2.8
in D	Big data exploration analytics	9.5 (27%)	7-15 yea			-0.7
etion ion	Wired pipe technologies	16.1 (45%)	6-12 mont	orth of N	Vorwegian	-1.1
TTA3 g, completio intervention	Slot recovery technologies	11.5 (32%)	6-12 mont			-0.4
TTA3 Drilling, completion and intervention	Automated drilling control	16.1 (45%)	6-12 mon	CO_2 en	nissions	-3.1
Drillin and	Smarter smart wells	11.5 (32%)	6-18 mor			-12
sing	Predictive maintenance	35.3 (100%)	1-2 year			-1.8
oces: port	Unmanned platforms	7.9 (22%)	2-4			-4.7
TTA4 uction, proces and transport	Standardized subsea satellites	10.4 (29%)	1 year			Neutral
TT A4 Production, processing and transport	All electric subsea	10.6 (30%)	2-3 у			-0.5
Pro	Flow assurance	2.3 (6%)	2-3 y			Neutral
				SI	nort term (2020-2025) Long term (2025-2050)